Skip to main content
Log in

Lava effusion rate evolution and erupted volume during the 2018 Kīlauea lower East Rift Zone eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 2018 eruption on the lower East Rift Zone of Kīlauea Volcano produced one of the largest and most destructive lava flows in Hawai’i during the past 200 years. Over the course of more than 3 months, twenty-four fissures erupted, and the rate of lava effusion varied by two orders of magnitude, with significant implications for evolving flow behavior and hazards. Syn-eruptive data were collected to quantify these changes in lava effusion rate, including video of flow through channels and digital elevation models acquired using small unoccupied aircraft systems, airborne lidar, and airborne single-pass interferometric synthetic aperture radar. Topographic data through time allowed calculation of subaerial lava flow volume and time-averaged discharge rate over the course of the eruption, which we integrated with pre- and post-eruption bathymetric surveys. Repeat videos of the near-vent channel were analyzed with particle velocimetry to extract flow velocities, and these were combined with open channel flow theory to calculate a time series of instantaneous effusion rates. Results show a general increase in dense rock equivalent (DRE) effusion rate from ~7 to ~100 m3/s from early to late May for the whole flow field and ≥ 200 m3/s by mid-June after the eruption had focused at a primary vent. By the end of the eruption in August, 0.9–1.4 km3 DRE of lava had erupted, with 0.4 km3 deposited on land and at least 0.5 km3 offshore. The trends in effusion rate through time reflect magmatic processes in the connected summit and rift zone system that controlled eruption rate, with resulting implications for lava flow dynamics and hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson KR, Johanson IA, Patrick MR, Gu M, Segall P, Poland MP, Montgomery-Brown EK, Miklius A (2019) Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science 366:6470. https://doi.org/10.1126/science.aaz1822

    Article  Google Scholar 

  • Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth Planet Sc Lett 447:161–171. https://doi.org/10.1016/j.epsl.2016.04.029

    Article  Google Scholar 

  • Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows, Geological Society of America Special Papers 396, https://doi.org/10.1130/0-8137-2396-5.189

  • Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Bonny E, Thordarson T, Wright R, Höskuldsson A, Jónsdóttir I (2018) The volume of lava erupted during the 2014 to 2015 eruption at Holuhraun, Iceland: a comparison between satellite- and ground-based measurements. J Geophys Res-Sol Ea 123:5412–5426. https://doi.org/10.1029/2017JB015008

    Article  Google Scholar 

  • Bonny E, Wright R (2017) Predicting the end of lava flow-forming eruptions from space. Bull Volcanol 79:52. https://doi.org/10.1007/s00445-017-1134-8

  • Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123. https://doi.org/10.1016/S0377-0273(02)00308-6

    Article  Google Scholar 

  • Carn SA (2016) On the detection and monitoring of effusive eruptions using satellite SO2 measurements. Geol Soc Lond Spec Publ 426:277–292. https://doi.org/10.1144/SP426.28

    Article  Google Scholar 

  • Carr BB, Clarke AB, Arrowsmith JR, Vanderkluysen L, Dhanu BE (2019) The emplacement of the active lava flow at Sinabung Volcano, Sumatra, Indonesia, documented by structure-from-motion photogrammetry. J Volcanol Geotherm Res 382:164–172. https://doi.org/10.1016/j.jvolgeores.2018.02.004

    Article  Google Scholar 

  • Cashman KV, Grant GE (2011) Coherent flow structures in basaltic lava flows - flow dynamics and rheology. AGU Fall Meeting Abstracts:EP31C-0833

  • Chanson H (2009) Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur J Mech - B/Fluids 28:191–210. https://doi.org/10.1016/j.euromechflu.2008.06.004

    Article  Google Scholar 

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120. https://doi.org/10.1016/j.epsl.2013.09.022

    Article  Google Scholar 

  • Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112. https://doi.org/10.1029/2006JF000598

  • Connor LJ, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcan 1(1). https://doi.org/10.1186/2191-5040-1-3

  • Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2016) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. Geol Soc Lond Spec Publ 426:181–205. https://doi.org/10.1144/SP426.5

    Article  Google Scholar 

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:Q03010. https://doi.org/10.1029/2008GC002138

    Article  Google Scholar 

  • deGraffenried R, Hammer J, Dietterich H, Perroy R, Patrick M, Shea T (2019) Ground-truthing lava flow propagation models with examples from the 2018 eruption of Kilauea Volcano HI. Fall 2019 Virtual Poster Showcase, American Geophysical Union

  • Del Negro C, Cappello A, Ganci G (2016) Quantifying lava flow hazards in response to effusive eruption. Geol Soc Am Bull 128:752–763. https://doi.org/10.1130/B31364.1

    Article  Google Scholar 

  • Del Negro C, Cappello A, Neri M, Bilotta G, Hérault A, Ganci G (2013) Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Sci Rep:3. https://doi.org/10.1038/srep03493

  • DeSmither, LG, Diefenbach, AK, Dietterich, HR (2021) Unoccupied Aircraft Systems (UAS) video of the 2018 lower East Rift Zone eruption of Kīlauea Volcano, Hawaii. U.S. Geological Survey data release. https://doi.org/10.5066/P9BVENTG.

  • Diefenbach AK (2018) The use of UAS to monitor topographic change at the summit and lower east rift zone during the 2018 Kīlauea eruption response. AGU Fall Meeting Abstracts:G13A-05

  • Dietterich HR, Diefenbach AK, Zoeller MH, Patrick MR, Carr BB (2020) Lava flow forecasting aided by remote sensing during the 2018 Kīlauea lower East Rift Zone eruption. AGU Fall Meeting Abstracts: V029-02

  • Dietterich HR, Downs DT, Stelten ME, Zahran H (2018) Reconstructing lava flow emplacement histories with rheological and morphological analyses: the Harrat Rahat volcanic field, Kingdom of Saudi Arabia. Bull Volcanol 80:85. https://doi.org/10.1007/s00445-018-1259-4

    Article  Google Scholar 

  • Dzurisin D, Poland MP (2018) Magma supply to Kīlauea Volcano, Hawai‘i, from inception to now: historical perspective, current state of knowledge, and future challenges. Geol Soc Am Spec Pap 538:275295

    Google Scholar 

  • Epp D, Decker RW, Okamura AT (1983) Relation of summit deformation to East Rift Zone eruptions on Kilauea Volcano, Hawaii. Geophys Res Lett 10:493–496. https://doi.org/10.1029/GL010i007p00493

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. Journal of Geophysical Research 115:B11203. https://doi.org/10.1029/2010JB007463

    Article  Google Scholar 

  • Fonstad MA, Zettler-Mann A (2020) The camera and the geomorphologist. Geomorphology 366:107181. https://doi.org/10.1016/j.geomorph.2020.107181

    Article  Google Scholar 

  • Ganci G, Vicari A, Cappello A, Del Negro C (2012) An emergent strategy for volcano hazard assessment: from thermal satellite monitoring to lava flow modeling. Remote Sensing of Environment 119:197–207. https://doi.org/10.1016/j.rse.2011.12.021

    Article  Google Scholar 

  • Gansecki C, Lee RL, Shea T, Lundblad SP, Hon K, Parcheta C (2019) The tangled tale of Kīlauea’s 2018 eruption as told by geochemical monitoring. Science 366:. 10.1126/science.aaz0147

  • Grant GE (1997) Critical flow constrains flow hydraulics in mobile-bed streams: a new hypothesis. Water Resour Res 33:349–358. https://doi.org/10.1029/96WR03134

    Article  Google Scholar 

  • Gudmundsson MT, Jónsdóttir K, Hooper A, et al (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353. https://doi.org/10.1126/science.aaf8988

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540

    Article  Google Scholar 

  • Guilbaud M-N, Self S, Thordarson T, Blake S (2005) Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geological Society of America Special Papers 396:81–102. https://doi.org/10.1130/0-8137-2396-5.81

    Article  Google Scholar 

  • Halverson B, Hammer J, Lev E, et al (2020) Vesicularity, crystallinity, and implications for rheology of the Kīlauea 2018 Lava Flows. AGU Fall Meeting Abstracts: V002-0016

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. https://doi.org/10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Harris A, Favalli M, Steffke A, Fornaciai A, Boschi E (2010) A relation between lava discharge rate, thermal insulation, and flow area set using lidar data. Geophys Res Lett 37. https://doi.org/10.1029/2010GL044683

  • Harris A, Groeve TD, Carn S, Garel F (2016) Risk evaluation, detection and simulation during effusive eruption disasters. Geological Society, London, Special Publications 426:SP426.29. https://doi.org/10.1144/SP426.29

    Article  Google Scholar 

  • Harris AJL, Villeneuve N, Di Muro A et al (2017) Effusive crises at Piton de la Fournaise 2014–2015: a review of a multi-national response model. J Appl Volcanol 6:11. https://doi.org/10.1186/s13617-017-0062-9

    Article  Google Scholar 

  • Hernández PA, Calvari S, Ramos A, Pérez NM, Márquez A, Quevedo R, Barrancos J, Padrón E, Padilla GD, López D, Santana ÁR, Melián GV, Dionis S, Rodríguez F, Calvo D, Spampinato L (2014) Magma emission rates from shallow submarine eruptions using airborne thermal imaging. Remote Sensing of Environment 154:219–225. https://doi.org/10.1016/j.rse.2014.08.027

    Article  Google Scholar 

  • James MR, Carr B, D’Arcy F et al (2020) Volcanological applications of unoccupied aircraft systems (UAS): developments, strategies, and future challenges. Volcanica 3:67–114. https://doi.org/10.30909/vol.03.01.67114

    Article  Google Scholar 

  • James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophys Res Lett 39. https://doi.org/10.1029/2012GL054245

  • Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 49:793–807. https://doi.org/10.1080/14786442508634662

    Article  Google Scholar 

  • Kauahikaua J, Cashman KV, Mattox TN, Heliker C, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res 103:27303–27323. https://doi.org/10.1029/97JB03576

    Article  Google Scholar 

  • Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Puu Oo-Kupaianaha eruption: a tale of two decades. In: Heliker CC, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kūpaianaha Eruption of Kīlauea Volcano, Hawai‘i: The First 20 Years, USGS Professional Paper. 1676:63–87

  • Kauahikaua JP, Trusdell FA (2020) Have humans influenced volcanic activity on the lower East Rift Zone of Kīlauea Volcano? A publication review. USGS Open-File Report 2020-1017, Reston, VA, USA. https://doi.org/10.3133/ofr20201017

  • Kennedy JF (1963) The mechanics of dunes and antidunes in erodible-bed channels. J Fluid Mech 16:521–544. https://doi.org/10.1017/S0022112063000975

    Article  Google Scholar 

  • Kern C, Lerner AH, Elias T, Nadeau PA, Holland L, Kelly PJ, Werner CA, Clor LE, Cappos M (2020) Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS measurements. Bull Volcanol 82:55. https://doi.org/10.1007/s00445-020-01390-8

    Article  Google Scholar 

  • Le Moigne Y, Zurek JM, Williams-Jones G, Lev E, Calahorrano-Di Patre A, Anzieta J (2020) Standing waves in high speed lava channels: a tool for constraining lava dynamics and eruptive parameters. J Volcanol Geotherm Res 401:106944. https://doi.org/10.1016/j.jvolgeores.2020.106944

    Article  Google Scholar 

  • Lerner AH, Wallace PJ, Shea T, Mourey AJ, Kelly PK, Nadeau PA, Elias T, Kern C, Clor LE, Gansecki C, Lee RL, Moore LR, Werner CA (in revision) The petrologic and degassing behavior of sulfur and magmatic volatiles from the 2018 eruption of Kīlauea, HI: melt concentrations, storage depths, and redox variations. Bull Volcanol, this volume.

  • Lev E, James MR (2014) The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. Bull Volcanol 76:829. https://doi.org/10.1007/s00445-014-0829-3

    Article  Google Scholar 

  • Lev E, Spiegelman M, Wysocki RJ, Karson JA (2012) Investigating lava flow rheology using video analysis and numerical flow models. J Volcanol Geotherm Res 247–248:62–73. https://doi.org/10.1016/j.jvolgeores.2012.08.002

    Article  Google Scholar 

  • Lipman P, Banks N (1987) A’a flow dynamics, Mauna Loa 1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. USGS Professional Paper. 1350:1527–1567

  • Lundgren PR, Bagnardi M, Dietterich H (2019) Topographic changes during the 2018 Kīlauea eruption from single-pass airborne InSAR. Geophys Res Lett 46:9554–9562. https://doi.org/10.1029/2019GL083501

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158. https://doi.org/10.1016/j.jvolgeores.2013.02.014

    Article  Google Scholar 

  • Magirl CS, Gartner JW, Smart GM, Webb RH (2009) Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah. Water Resour Res 45. https://doi.org/10.1029/2009WR007731

  • Mosbrucker AR, Zoeller MH, Ramsey DW (2020) Digital elevation model of Kīlauea volcano, Hawaii, based on July 2019 airborne lidar surveys. USGS data release. https://doi.org/10.5066/P9F1ZU8O

  • Nadeau, PA, Diefenbach AK, Hurwitz S, Swanson DA (2020) From lava to water: a new era at Kīlauea. Eos 101. https://doi.org/10.1029/2020EO149557

  • Neal CA, Brantley SR, Antolik L, Babb JL, Burgess M, Calles K, Cappos M, Chang JC, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson IA, Kamibayashi K, Kauahikaua J, Lee RL, Pekalib S, Miklius A, Million W, Moniz CJ, Nadeau PA, Okubo P, Parcheta C, Patrick MR, Shiro B, Swanson DA, Tollett W, Trusdell F, Younger EF, Zoeller MH, Montgomery-Brown EK, Anderson KR, Poland MP, Ball JL, Bard J, Coombs M, Dietterich HR, Kern C, Thelen WA, Cervelli PF, Orr T, Houghton BF, Gansecki C, Hazlett R, Lundgren P, Diefenbach AK, Lerner AH, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G, Damby D (2019) The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363:367–374. https://doi.org/10.1126/science.aav7046

    Article  Google Scholar 

  • Patrick MR, Dietterich HR, Lyons JJ, Diefenbach AK, Parcheta C, Anderson KR, Namiki A, Sumita I, Shiro B, Kauahikaua JP (2019) Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. Science 366:eaay9070. https://doi.org/10.1126/science.aay9070

    Article  Google Scholar 

  • Patrick MR, Houghton BF, Anderson KR, Poland MP, Montgomery-Brown E, Johanson I, Thelen W, Elias T (2020) The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nature Communications 11:5646. https://doi.org/10.1038/s41467-020-19190-1

    Article  Google Scholar 

  • Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Gudnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res. 340:155–169. https://doi.org/10.1016/j.jvolgeores.2017.02.027

    Article  Google Scholar 

  • Pinkerton H (1993) Measuring the properties of flowing lavas. In: Kilburn CRJ, Luongo G (eds) Active lavas. UCL Press, London, pp 175–191

    Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120. https://doi.org/10.1007/BF00304106

    Article  Google Scholar 

  • Plank S, Massimetti F, Soldati A, Hess KU, Nolde M, Martinis S, Dingwell DB (2021) Estimates of lava discharge rate of 2018 Kīlauea Volcano, Hawai’i eruption using multi-sensor satellite and laboratory measurements. Int J Remote Sens 42:1492–1511. https://doi.org/10.1080/01431161.2020.1834165

    Article  Google Scholar 

  • Poland MP (2014) Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai‘i, measured from TanDEM-X interferometry: implications for magma supply and storage during 2011–2013. J Geophys Res Solid Earth 119:2014JB011132. https://doi.org/10.1002/2014JB011132

    Article  Google Scholar 

  • Rhéty M, Harris A, Villeneuve N, Gurioli L, Médard E, Chevrel O, Bachélery P (2017) A comparison of cooling-limited and volume-limited flow systems: examples from channels in the Piton de la Fournaise April 2007 lava-flow field. Geochem Geophys Geosyst 18:3270–3291. https://doi.org/10.1002/2017GC006839

    Article  Google Scholar 

  • Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i. J Volcanol Geotherm Res 183:139–156. https://doi.org/10.1016/j.jvolgeores.2009.03.002

    Article  Google Scholar 

  • Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76:824. https://doi.org/10.1007/s00445-014-0824-8

    Article  Google Scholar 

  • Roman A, Lundgren P (accepted) Dynamics of large effusive eruptions driven by caldera collapse. Nature

  • Roman D, Soldati A, Dingwell DB, Houghton BF, Shiro B (2020) Earthquakes indicated lava viscosity during the 2018 eruption of Kīlauea Volcano, Hawai‘i. AGU Fall Meeting Abstracts:V002-0004

  • Sakimoto SE, Gregg TK (2001) Channeled flow: analytic solutions, laboratory experiments, and applications to lava flows. J Geophys Res Solid Earth 106:8629–8644

    Article  Google Scholar 

  • Segall P, Anderson KR, Johanson I, Miklius A (2019) Mechanics of inflationary deformation during caldera collapse: evidence from the 2018 Kīlauea eruption. Geophys Res Lett 46:11782–11789. https://doi.org/10.1029/2019GL084689

    Article  Google Scholar 

  • Smith JR (2016) Multibeam Backscatter and Bathymetry Synthesis for the main Hawaiian islands final technical report. University of Hawai‘i Undersea Research Laboratory, pp. 15

  • Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from internet photo collections. Int J Comput Vis 80:189–210. https://doi.org/10.1007/s11263-007-0107-3

    Article  Google Scholar 

  • Soldati A, Dingwell DB, Houghton BF (2019) Insights from disequilibrium and equilibrium crystallization rheological experiments on the 2018 Kilauea LERZ eruptive sequence. AGU Fall Meeting Abstracts: V23G-0296

  • Soule SA, Zoeller M, Parcheta C (in press) Submarine lava deltas of the 2018 eruption of Kīlauea Volcano. Bull Volcanol

  • Sutton AJ, Elias T, Kauahikaua J (2003) Lava-effusion rates for the Pu‘u ‘Ō‘ō-Kūpaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. In: Heliker CC, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kūpaianaha Eruption of Kīlauea Volcano, Hawai‘i: The First 20 Years. USGS Professional Paper 1676:137–148

    Google Scholar 

  • Tallarico A, Dragoni M (1999) Viscous Newtonian laminar flow in a rectangular channel: application to Etna lava flows. Bull Volcanol 61:40–47. https://doi.org/10.1007/s004450050261

    Article  Google Scholar 

  • Thielicke W, Stamhuis E (2014) PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Research Software 2:e30. https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  • Tinkler KJ (1997) Indirect velocity measurement from standing waves in rockbed rivers. J Hydraul Eng 123:918–921

    Article  Google Scholar 

  • Turner NR, Perroy RL, Hon K (2017) Lava flow hazard prediction and monitoring with UAS: a case study from the 2014–2015 Pāhoa lava flow crisis, Hawai‘i. Journal of Applied Volcanology 6:17. https://doi.org/10.1186/s13617-017-0068-3

    Article  Google Scholar 

  • USGS (2018a) Kilauea Volcano, June HI 2018 Acquisition airborne lidar survey. U.S. Geological Survey in collaboration with GEO1, Windward Aviation, Quantum Spatial, and Cold Regions Research and Engineering Laboratory. Distributed by OpenTopography. https://doi.org/10.5069/G98K7718

  • USGS (2018b) Kilauea Volcano, HI July 2018 Acquisition airborne lidar survey. U.S. Geological Survey in collaboration with the State of Hawaii, Federal Emergency Management Agency, Cold Regions Research and Engineering Laboratory, and the National Center for Airborne Laser Mapping. Distributed by OpenTopography. https://doi.org/10.5069/G9M32SV1

  • USGS Hawaiian Volcano Observatory (2018) Preliminary analysis of the ongoing Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano: fissure 8 prognosis and ongoing hazards. Cooperator Report to Hawaii County Civil Defense. https://volcanoes.usgs.gov/vsc/file_mngr/file-185/USGS%20Preliminary%20Analysis_LERZ_7-15-18_v1.1.pdf

  • Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139–168. https://doi.org/10.1016/0377-0273(81)90020-2

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of Lava Flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 274:107–118. https://doi.org/10.1098/rsta.1973.0030

    Article  Google Scholar 

  • Wolfe EW, Neal CA, Banks NG, Duggan TJ (1988) Geologic observations and chronology of eruptive events. In: Wolfe EW (ed) The Puu Oo eruption of Kilauea Volcano, Hawaii; episodes 1 through 20, January 3, 1983, through June 8, 1984. USGS Professional Paper 1463:1–98

  • Wright TL, Fiske RS (1971) Origin of the differentiated and hybrid lavas of Kilauea Volcano, Hawaii. J Petrol 12(1):1–65

  • Wright R, Blake S, Harris AJL, Rothery DA (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sc Lett 192:223–233. https://doi.org/10.1016/S0012-821X(01)00443-5

    Article  Google Scholar 

  • Zoeller MH, Perroy RL, Wessels R, Fisher GB, Robinson JE, Bard JA, Peters J, Mosbrucker A, Parcheta C (2020) Geospatial database of the 2018 lower East Rift Zone eruption of Kilauea Volcano, Hawaii. USGS data release, https://doi.org/10.5066/P9S7UQKQ.

Download references

Acknowledgements

We thank the staff of the USGS Hawaiian Volcano Observatory, the USGS-DOI UAS Kīlauea Response Team, Hawai’i County Civil Defense, the USGS Volcano Science Center staff, University of Hawai’i at Hilo, the Federal Emergency Management Agency, and numerous other partner agencies, scientific colleagues, and local residents who supported data collection, processing, and analysis during eruption response. We thank Ormat Technologies, Inc., for the use of their pre-eruption lidar DEM in our analysis. Gordon Grant, Kathy Cashman, and Becky Fasth all contributed to the analysis of standing wave trains in lava flows. This work benefited from discussions with Kyle Anderson, Carolyn Parcheta, Einat Lev, and Frank Engel. We thank Jenny Riker, Elise Rumpf, two anonymous reviewers, and editor Tom Shea for their constructive comments.

Funding

Bathymetry work was supported by the National Science Foundation (NSF OCE-0525863) and the National Oceanographic and Atmospheric Administration Office of Ocean Exploration and Research. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah R. Dietterich.

Additional information

Editorial responsibility: T. Shea

This paper constitutes part of a topical collection: The historic events at Kilauea Volcano in 2018: summit collapse, rift zone eruption, and Mw6.9 earthquake

Supplementary information

ESM 1

(DOCX 1.91 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietterich, H.R., Diefenbach, A.K., Soule, S.A. et al. Lava effusion rate evolution and erupted volume during the 2018 Kīlauea lower East Rift Zone eruption. Bull Volcanol 83, 25 (2021). https://doi.org/10.1007/s00445-021-01443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01443-6

Keywords

Navigation