Skip to main content
Log in

A diffusion–reaction–deformation coupling model for lithiation of silicon electrodes considering plastic flow at large deformation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Silicon (Si) is extensively used as an electrode in lithium (Li) ion batteries for its superiority in the charging capacity. However, the lithiation of Si would induce large deformation and significant stress jump across a two-phase interface in Si electrodes and might eventually lead to structure failure of batteries. To improve the performance and life of Li ion batteries, it is of great importance to exactly model the lithiation process. In the past decade, although many models have been developed for the lithiation, most of them just relate the deformation with the diffusion, without considering the effect of electrochemical reactions, so that they cannot simulate the formation of the two-phase interface. In this paper, we aim to develop a fully coupling diffusion–reaction–deformation model for large deformation cases and apply it to simulate the lithiation process, where a reaction barrier effect is proposed to describe the formation of the two-phase interface due to fast reaction and the mechanical behaviors of Si electrodes such as large plastic flow during lithiation process are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Limthongkul, P., Jang, Y.-I., Dudney, N.J., Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003)

    Article  Google Scholar 

  2. Gao, F., Hong, W.: Phase-field model for the two-phase lithiation of silicon. J. Mech. Phys. Solids 94, 18–32 (2016)

    Article  MathSciNet  Google Scholar 

  3. McDowell, M.T., Lee, S.W., Nix, W.D., Cui, Y.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)

    Article  Google Scholar 

  4. Sethuraman, V.A., Chon, M.J., Shimshak, M., Srinivasan, V., Guduru, P.R.: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062–5066 (2010)

    Article  Google Scholar 

  5. Chon, M.J., Sethuraman, V.A., McCormick, A., Srinivasan, V., Guduru, P.R.: Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011)

    Article  Google Scholar 

  6. Obrovac, M.N., Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93 (2004)

    Article  Google Scholar 

  7. Lu, Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30, 248–253 (2017)

    Article  Google Scholar 

  8. Liu, X.H., Fan, F., Hui, Y., Zhang, S., Zhu, T.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495 (2012)

    Article  Google Scholar 

  9. Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gao, Y.F., Cho, M., Zhou, M.: Stress relaxation through interdiffusion in amorphous lithium alloy electrodes. J. Mech. Phys. Solids 61, 579–596 (2013)

    Article  MATH  Google Scholar 

  11. Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bucci, G., Nadimpalli, S.P.V., Sethuraman, V.A., Bower, A.F., Guduru, P.R.: Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J. Mech. Phys. Solids 62, 276–294 (2014)

    Article  Google Scholar 

  13. Li, Y., Zhang, J., Zhang, K., Zheng, B., Yang, F.: A defect-based viscoplastic model for large-deformed thin film electrode of lithium-ion battery. Int. J. Plast. 115, 293–306 (2019)

    Article  Google Scholar 

  14. Wang, J.W., He, Y., Fan, F., Liu, X.H., Xia, S., Liu, Y., Harris, C.T., Li, H., Huang, J.Y., Mao, S.X., Zhu, T.: Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13, 709–715 (2013)

    Article  Google Scholar 

  15. McDowell, M.T., Lee, S.W., Harris, J.T., Korgel, B.A., Wang, C., Nix, W.D., Cui, Y.: In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013)

    Article  Google Scholar 

  16. Liu, X.H., Wang, J.W., Huang, S., Fan, F., Huang, X., Liu, Y., Krylyuk, S., Yoo, J., Dayeh, S.A., Davydov, A.V., Mao, S.X., Picraux, S.T., Zhang, S., Li, J., Zhu, T., Huang, J.Y.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012)

    Article  Google Scholar 

  17. Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011)

    Article  Google Scholar 

  18. Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349–361 (2014)

    Article  Google Scholar 

  19. Cui, Z., Gao, F., Qu, J.: Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J. Mech. Phys. Solids 61, 293–310 (2013)

    Article  MathSciNet  Google Scholar 

  20. Huang, S., Fan, F., Li, J., Zhang, S., Zhu, T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61, 4354–4364 (2013)

    Article  Google Scholar 

  21. Poluektov, M., Freidin, A.B., Figiel, Ł: Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles. Int. J. Eng. Sci. 128, 44–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes. J. Electrochem. Soc. 161, F3164–F3172 (2014)

    Article  Google Scholar 

  24. Zhao, Y., Xu, B.-X., Stein, P., Gross, D.: Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles. Comput. Methods Appl. Mech. Eng. 312, 428–446 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chang, L., Lu, Y., He, L., Ni, Y.: Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations. Int. J. Solids Struct. 143, 73–83 (2018)

    Article  Google Scholar 

  26. Zhang, X., Zhong, Z.: A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction. J. Mech. Phys. Solids 107, 49–75 (2017)

    Article  MathSciNet  Google Scholar 

  27. Salvadori, A., McMeeking, R., Grazioli, D., Magri, M.: A coupled model of transport-reaction-mechanics with trapping. Part I—small strain analysis. J. Mech. Phys. Solids 114, 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Drozdov, A.D.: Viscoplastic response of electrode particles in Li-ion batteries driven by insertion of lithium. Int. J. Solids Struct. 51, 690–705 (2014)

    Article  Google Scholar 

  29. Zhang, X., Zhong, Z.: A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials. Sci. China Phys. Mech. 60, 084611 (2017)

    Article  Google Scholar 

  30. Zhang, X., Zhong, Z.: Thermo-chemo-elasticity considering solid state reaction and the displacement potential approach to quasi-static chemo-mechanical problems. Int. J. Appl. Mech. 10, 1850112 (2019)

    Article  Google Scholar 

  31. Loeffel, K., Anand, L.: A chemo-thermo-mechanically coupled theory for elastic–viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int. J. Plast. 27, 1409–1431 (2011)

    Article  MATH  Google Scholar 

  32. N’Guyen, T.A., Lejeunes, S., Eyheramendy, D., Boukamel, A.: A thermodynamical framework for the thermo-chemo-mechanical couplings in soft materials at finite strain. Mech. Mater. 95, 158–171 (2016)

    Article  Google Scholar 

  33. Sain, T., Loeffel, K., Chester, S.: A thermo–chemo–mechanically coupled constitutive model for curing of glassy polymers. J. Mech. Phys. Solids 116, 267–289 (2018)

    Article  MathSciNet  Google Scholar 

  34. Atkins, P., Paula, J.D.: Physical Chemistry, 7th edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  35. Xue, S.-L., Li, B., Feng, X.-Q., Gao, H.: Biochemomechanical poroelastic theory of avascular tumor growth. J. Mech. Phys. Solids 94, 409–432 (2016)

    Article  MathSciNet  Google Scholar 

  36. Loret, B., Simões, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A Solids 24, 757–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, Y., Chen, Y., Ai, S., Fang, D.: A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation. Int. J. Plast. 118, 173–189 (2019)

    Article  Google Scholar 

  38. Long, R., Qi, H.J., Dunn, M.L.: Thermodynamics and mechanics of photochemically reacting polymers. J. Mech. Phys. Solids 61, 2212–2239 (2013)

    Article  MathSciNet  Google Scholar 

  39. Freidin, A.B., Vilchevskaya, E.N., Korolev, I.K.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, Y., Stein, P., Bai, Y., Al-Siraj, M., Yang, Y., Xu, B.-X.: A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259–283 (2019)

    Article  Google Scholar 

  41. Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids. Struct. 40, 1465–1487 (2003)

    Article  MATH  Google Scholar 

  42. Ganser, M., Hildebrand, F.E., Kamlah, M., McMeeking, R.M.: A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes. J. Mech. Phys. Solids 125, 681–713 (2019)

    Article  MathSciNet  Google Scholar 

  43. Marcombe, R., Cai, S., Hong, W., Zhao, X., Lapusta, Y., Suo, Z.: A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6, 784–793 (2010)

    Article  Google Scholar 

  44. Shenoy, V.B., Johari, P., Qi, Y.: Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: a first-principles study. J. Power Sources 195, 6825–6830 (2010)

    Article  Google Scholar 

  45. Bower, A.F., Chason, E., Guduru, P.R., Sheldon, B.W.: A continuum model of deformation, transport and irreversible changes in atomic structure in amorphous lithium–silicon electrodes. Acta Mater. 98, 229–241 (2015)

    Article  Google Scholar 

  46. Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012)

    Article  Google Scholar 

  47. Chester, S.A., Anand, L.: A coupled theory of fluid permeation and large deformations for elastomeric materials. J. Mech. Phys. Solids. 58, 1879–1906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772106 and 11932005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix we present the numerical procedure by finite difference scheme for modeling the lithiation of Si electrodes. First, Eq. (67') can be rewritten as

$$\frac{{\partial \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{t}}} = k_{1} (\tilde{\phi }^{{{\text{Li}}}} ,\tilde{\ell })\frac{{\partial^{2} \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{Z}^{2} }} - k_{2} (\tilde{\phi }^{{{\text{Li}}}} ,\tilde{\ell })\frac{{\partial \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{Z}}} + k_{3} (\tilde{\phi }^{{{\text{Li}}}} ,\tilde{\ell })$$
(A1)

where

$$\begin{aligned} & k_{1} = \frac{1}{{\lambda^{2} }} \\ & k_{2} = \frac{3}{{\lambda^{3} }}\frac{\partial \lambda }{{\partial \tilde{Z}}} - - \frac{1}{{\lambda^{2} }}\frac{{\partial \tilde{\tau }^{{{\text{Li}}}} }}{{\partial \tilde{Z}}} \\ & k_{3} = - \left( {\frac{x}{{\lambda^{2} }}\frac{{\partial^{2} \tilde{\ell }}}{{\partial \tilde{Z}^{2} }} + \frac{{\tilde{C}^{{{\text{Li}}}} }}{{\lambda^{3} }}\frac{{\partial^{2} \lambda }}{{\partial \tilde{Z}^{2} }} - \frac{{\tilde{C}^{{{\text{Li}}}} }}{{\lambda^{2} }}\frac{{\partial^{2} \tilde{\tau }^{{{\text{Li}}}} }}{{\partial \tilde{Z}^{2} }}} \right) \\ & \quad + \left( {\frac{3x}{{\lambda^{3} }}\frac{\partial \lambda }{{\partial \tilde{Z}}}\frac{{\partial \tilde{\ell }}}{{\partial \tilde{Z}}} - \frac{x}{{\lambda^{2} }}\frac{{\partial \tilde{\tau }^{{{\text{Li}}}} }}{{\partial \tilde{Z}}}\frac{{\partial \tilde{\ell }}}{{\partial \tilde{Z}}} - \frac{{2\tilde{C}^{{{\text{Li}}}} }}{{\lambda^{3} }}\frac{\partial \lambda }{{\partial \tilde{Z}}}\frac{{\partial \tilde{\tau }^{{{\text{Li}}}} }}{{\partial \tilde{Z}}} + \frac{{3\tilde{C}^{{{\text{Li}}}} }}{{\lambda^{4} }}\left( {\frac{\partial \lambda }{{\partial \tilde{Z}}}} \right)^{2} } \right) \\ \end{aligned}$$
(A2)

We solve Eq. (A1) numerically using a forward in time, centered space finite difference scheme. A one-dimensional grid is constructed of \(m + 1\) points with uniform spacing \(\Delta \tilde{Z}\). A superscript \(n\) and a subscript \(i\) are used to denote the time increment and the spatial location, respectively, where \(i = 1\) corresponds to \(\tilde{Z} = 0\), and \(i = m + 1\) corresponds to \(\tilde{Z} = 1\). Hence, we approximate \(\tilde{\phi }^{{{\text{Li}}}}\) with the finite difference equations [47]

$$\begin{aligned} & \frac{{\partial \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{t}}} \approx \frac{{\tilde{\phi }_{i}^{n + 1} - \tilde{\phi }_{i}^{n} }}{{\Delta \tilde{t}}} \\ & \frac{{\partial \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{Z}}} \approx \frac{{\tilde{\phi }_{i + 1}^{n} - \tilde{\phi }_{i - 1}^{n} }}{{2\left( {\Delta \tilde{Z}} \right)}} \\ & \frac{{\partial^{2} \tilde{\phi }^{{{\text{Li}}}} }}{{\partial \tilde{Z}^{2} }} \approx \frac{{\tilde{\phi }_{i + 1}^{n} - 2\tilde{\phi }_{i}^{n} + \tilde{\phi }_{i - 1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} \\ \end{aligned}$$
(A3)

Here, for simplicity, we omit a superscript Li of the discrete value \(\tilde{\phi }_{i}^{n + 1}\) and use \(\Delta \tilde{t}\) to denote the time increment. In this way, the discrete form of Eq. (A1) is written as

$$\dot{\tilde{\phi }}_{i} + \left( { - \frac{{k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right)\tilde{\phi }_{{i - {1}}} + \frac{{2k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }}\tilde{\phi }_{i} + \left( { - \frac{{k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right)\tilde{\phi }_{{i + {1}}} = k_{3}$$
(A4)

where a super dot represents the time derivative and the superscript \(n\) is hidden because the time is not discrete at this moment.

Applying a forward and backward space finite difference to the boundary conditions at \(\tilde{Z} = 0\) and \(\tilde{Z} = 1\), respectively, Eq. (68′) yields, respectively,

$$\begin{aligned} & \tilde{\phi }_{2} = \tilde{\phi }_{1} \\ & \tilde{\phi }_{m + 1} = {\tilde{{J}}}_{0} \Delta \tilde{Z}\lambda^{2} \tilde{\phi }_{{{\text{max}}}} + \left( {1 - {\tilde{{J}}}_{0} \Delta \tilde{Z}\lambda^{2} } \right)\tilde{\phi }_{m} \\ \end{aligned}$$
(A5)

with the normalized flux rate \(\tilde{J}_{0}\) being defined by \(\tilde{J}_{0} = \frac{{J_{0} h_{0} }}{D}\) and the assumptions \(\left. {\frac{\partial \ell }{{\partial \tilde{Z}}}} \right|_{{\tilde{Z}{ = 0}}} = 0\) and \(\left. {\frac{\partial \ell }{{\partial \tilde{Z}}}} \right|_{{\tilde{Z}{ = 1}}} = 0\).

Next, we write Eq. (A4) in a vector form as

$$\left[ {0\;\;1\;\;0} \right]\left[ \begin{gathered} \dot{\tilde{\phi }}_{i - 1} \hfill \\ \dot{\tilde{\phi }}_{i} \hfill \\ \dot{\tilde{\phi }}_{i + 1} \hfill \\ \end{gathered} \right] + \left[ {\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2} }}{{2\Delta \tilde{Z}}}\;\;\;\frac{{2k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }}\;\;\;\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right]\left[ \begin{gathered} \tilde{\phi }_{i - 1} \hfill \\ \tilde{\phi }_{i} \hfill \\ \tilde{\phi }_{i + 1} \hfill \\ \end{gathered} \right] = k_{3}$$
(A6)

Applying Eq. (A5) in Eq. (A6), we obtain

$$\begin{aligned} & \left[ {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \right]\left[ \begin{gathered} \dot{\tilde{\phi }}_{2} \hfill \\ \dot{\tilde{\phi }}_{3} \hfill \\ \end{gathered} \right] + \left[ {\frac{{k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2} }}{{2\Delta \tilde{Z}}}\;\;\;\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right]\left[ \begin{gathered} \tilde{\phi }_{2} \hfill \\ \tilde{\phi }_{3} \hfill \\ \end{gathered} \right] = k_{3} \\ & \left[ {\begin{array}{*{20}c} 0 & 1 \\ \end{array} } \right]\left[ \begin{gathered} \dot{\tilde{\phi }}_{m - 1} \hfill \\ \dot{\tilde{\phi }}_{m} \hfill \\ \end{gathered} \right] + \left[ {\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2} }}{{2\Delta \tilde{Z}}}\;\;\;\frac{{2k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \left( {\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right)\left( {1 - \tilde{J}_{0} \Delta \tilde{Z}\lambda^{2} } \right)} \right]\left[ \begin{gathered} \tilde{\phi }_{m - 1} \hfill \\ \tilde{\phi }_{m} \hfill \\ \end{gathered} \right] \\ & \quad = k_{3} - \left( {\frac{{ - k_{1} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2} }}{{2\Delta \tilde{Z}}}} \right)\tilde{J}_{0} \Delta \tilde{Z}\lambda^{2} \tilde{\phi }_{{{\text{max}}}} \\ \end{aligned}$$
(A7)

Then, assembling Eqs. (A6) and (A7), we get

$${\mathbf{D}}^{n} \dot{\tilde{\phi }}^{n} + {\mathbf{K}}^{n} \tilde{\phi }^{n} = {\mathbf{P}}^{n}$$
(A8)

with the matrixes \({\mathbf{D}}^{n}\), \({\mathbf{K}}^{n}\), \({\mathbf{P}}^{n}\), and the vectors \(\dot{\tilde{\phi }}^{n}\), \(\tilde{\phi }^{n}\) being

$$\begin{aligned} & {\mathbf{D}}^{n} = \left( {\begin{array}{*{20}c} 1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right)_{m - 1} ,\;\;\;\;\dot{\tilde{\phi }}^{n} = \left[ \begin{gathered} \dot{\tilde{\phi }}_{2}^{n} \hfill \\ \; \vdots \hfill \\ \dot{\tilde{\phi }}_{m}^{n} \hfill \\ \end{gathered} \right]_{m - 1} ,\;\;\;\;\tilde{\phi }^{n} = \left[ \begin{gathered} \tilde{\phi }_{2}^{n} \hfill \\ \; \vdots \hfill \\ \tilde{\phi }_{m}^{n} \hfill \\ \end{gathered} \right]_{m - 1} , \\ & {\mathbf{P}}^{n} = \left[ \begin{gathered} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;k_{3}^{n} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;k_{3}^{n} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \hfill \\ k_{3}^{n} - \left( {\frac{{ - k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2}^{n} }}{{2\Delta \tilde{Z}}}} \right)\tilde{J}_{0} \Delta \tilde{Z}\lambda^{2} \tilde{\phi }_{{{\text{max}}}} \hfill \\ \end{gathered} \right]_{m - 1} , \\ & {\mathbf{K}}^{n} = {\text{diag}}\left( {{\mathbf{v}}_{1}^{n} } \right) + {\text{diag}}\left( {{\mathbf{v}}_{2}^{n} ,1} \right) + {\text{diag}}\left( {{\mathbf{v}}_{3}^{n} , - 1} \right) \\ \end{aligned}$$
(A9)

where the main diagonal \({\mathbf{v}}_{1}^{n}\) has components: \({\mathbf{v}}_{1}^{n} \left( 1 \right) = \frac{{k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2}^{n} }}{{2\Delta \tilde{Z}}},\)\({\mathbf{v}}_{1}^{n} \left( {2:m - 2} \right) = \frac{{2k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }},\)\({\mathbf{v}}_{1}^{n} (m - 1) = \frac{{2k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \left( {\frac{{ - k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2}^{n} }}{{2\Delta \tilde{Z}}}} \right)\left( {1 - {\tilde{{J}}}_{0} \Delta \tilde{Z}\lambda^{2} } \right)\), the first upper diagonal \({\mathbf{v}}_{2}^{n}\) has components: \({\mathbf{v}}_{2} (1:m - 2) = \frac{{ - k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} + \frac{{k_{2}^{n} }}{{2\Delta \tilde{Z}}}\), and the first lower diagonal \({\mathbf{v}}_{3}^{n}\) has components: \({\mathbf{v}}_{3}^{n} \left( {1:m - 2} \right) = \frac{{ - k_{1}^{n} }}{{\left( {\Delta \tilde{Z}} \right)^{2} }} - \frac{{k_{2}^{n} }}{{2\Delta \tilde{Z}}}\).

Finally, using the forward finite difference in time for Eq. (A3)1 in Eq. (A8), values of \(\tilde{\phi }^{n}\) at the grid points are updated in each time step by

$$\tilde{\phi }^{n + 1} = (\frac{{{\mathbf{D}}^{n} }}{{\Delta \tilde{t}}})^{ - } \left( {\left( {\frac{{{\mathbf{D}}^{n} }}{{\Delta \tilde{t}}} - {\mathbf{K}}^{n} } \right)\tilde{\phi }^{n} + {\mathbf{P}}^{n} } \right)$$
(A10)

with the initial condition \(\tilde{\phi }^{1} = 0\).

As for chemical kinetics Eq. (76'), we update them, respectively, by

$$\tilde{\ell }^{n + 1} = \tilde{\kappa }_{0}^{ + } \lambda^{ - 2} \exp \left( {0.01\tilde{\tau }} \right) \, \left( {\tilde{\phi }^{n} - x\tilde{\ell }^{n} } \right)^{2} \left( {1 - \tilde{\ell }^{n} } \right)\Delta \tilde{t} + \tilde{\ell }^{n}$$
(A11)

with the initial condition \(\tilde{\ell }^{1} = 0\) and the parameters \(\tilde{\kappa }_{0}^{ + }\) defined by \(\tilde{\kappa }_{0}^{ + } = \kappa_{0}^{ + } \frac{{h_{0}^{2} }}{D}C_{0}^{{{\text{Si}}}}\).

Equation (62) is discretized to calculate the plastic stretch by the following implicit schemes:

$$\lambda^{{{\text{p}},\;n}} = \lambda^{{{\text{p}},\;n - 1}} \exp \left( { - \dot{d}_{0} \frac{{\sigma^{,\;n} }}{{\left| {\sigma^{,\;n} } \right|}}\left( {\frac{{\left| {\sigma^{,\;n} } \right|}}{{\sigma_{0} }} - 1} \right)^{{m_{0} }} H\left( {\frac{{\left| {\sigma^{,\;n} } \right|}}{{\sigma_{0} }} - 1} \right)\Delta t} \right),\;\;{\text{when}}\;\left| {\sigma^{,\;n} } \right| \le \sigma_{0}$$
(A12)

Here \(n\) and \(n - 1\) after a comma indicate a quantity belongs to the current and previous step.

A summary of the numerical procedure for lithiation in silicon electrode is provided in Box 1. To ensure the convergence, the reasonable time step and spatial step should be carefully chosen. For this case, \(\Delta \tilde{t} = 10^{ - 6}\) and \(\Delta \tilde{Z} = 0.01\) are taken for calculation.

Box 1 Summary of algorithm for lithiation of Si

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, B., Zhong, Z. A diffusion–reaction–deformation coupling model for lithiation of silicon electrodes considering plastic flow at large deformation. Arch Appl Mech 91, 2713–2733 (2021). https://doi.org/10.1007/s00419-021-01919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01919-z

Keywords

Navigation