Skip to main content
Log in

Thermodynamic Assessment of the Co-Cr-Nb System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this work, the Co-Cr-Nb ternary system was evaluated using the CALPHAD technique based on the experimental measurements of the isothermal sections at 1000, 1100 and 1200 °C. The solution phases including Liquid, Bcc, Fcc and Hcp were described by a substitutional solution model. The Laves phases were described by a two-sublattice model. The σ phase was described by a three-sublattice model of (Co,Nb)8Cr4(Co,Cr,Nb)18 and the μ phase was described by a four-sublattice model of Co1(Co,Cr,Nb)2(Nb)4(Co,Cr,Nb)6. The Co7Nb2 was treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters for the Gibbs energies of individual phase in the Co-Cr-Nb system has been obtained which leads to a great fit between calculated results and experimented data. The calculated liquidus projection and reaction scheme of the Co-Cr-Nb ternary system have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. E. Akca, and A. Gürsel, E. Akca, and A. Gürsel, A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy, Periodicals Eng. Nat. Sci. (PEN), 2015. https://doi.org/10.21533/pen.v3i1.43

    Article  Google Scholar 

  3. T.M. Pollock, and S. Tin, T.M. Pollock, and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propul. Power, 2006, 22(2), p 361–374

    Article  Google Scholar 

  4. N. Khatavkar, S. Swetlana, and A.K. Singh, N. Khatavkar, S. Swetlana, and A.K. Singh, Accelerated Prediction of Vickers Hardness of Co- and Ni-Based Superalloys from Microstructure and Composition Using Advanced Image Processing Techniques and Machine Learning, Acta Mater., 2020, 196, p 295–303

    Article  ADS  Google Scholar 

  5. T.O.J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, T.O.J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 2006, 312, p 90–91

    Article  ADS  Google Scholar 

  6. D.W. Chung, D.S. Ng, and D.C. Dunand, D.W. Chung, D.S. Ng, and D.C. Dunand, Influence of γ′-Raft Orientation on Creep Resistance of Monocrystalline Co-Based Superalloys, Materialia, 2020, 12, p 100678

    Article  Google Scholar 

  7. H.Y. Yan, V.A. Vorontsov, and D. Dye, H.Y. Yan, V.A. Vorontsov, and D. Dye, Effect of Alloying on the Oxidation Behaviour of Co-Al-W Superalloys, Corros. Sci., 2014, 83, p 382–395

    Article  Google Scholar 

  8. G.C.W.I.G. Wright, G.C.W.I.G. Wright, The Isothermal Oxidation of Co-Cr Alloys in 760 Torr Oxygen at 1000 °C Oxid, Oxid. Met., 1977, 11, p 163–191

    Article  Google Scholar 

  9. B. Gao, L. Wang, Y. Liu, X. Song, S.Y. Yang, and A. Chiba, B. Gao, L. Wang, Y. Liu, X. Song, S.Y. Yang, and A. Chiba, High Temperature Oxidation Behaviour of γ′-Strengthened Co-Based Superalloys with Different Ni Addition, Corros. Sci., 2019, 157, p 109–115

    Article  Google Scholar 

  10. T.M. Butler, J.P. Alfano, R.L. Martens, and M.L. Weaver, T.M. Butler, J.P. Alfano, R.L. Martens, and M.L. Weaver, High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys, JOM, 2015, 67(1), p 246–259

    Article  ADS  Google Scholar 

  11. C.G. Xu, Y.S. Wu, and Y.R. Qian, Modern Engineering Alloy. National Defense Industry Press, 1983.

    Google Scholar 

  12. C.C. Shing, D.L. Douglass, and F. Gesmundo, C.C. Shing, D.L. Douglass, and F. Gesmundo, The High-Temperature Corrosion Behavior of Co-Nb Alloys in Mixed-Gas Atmospheres, Oxid. Met., 1992, 37(3–4), p 167–181

    Article  Google Scholar 

  13. S.-Y. Yen, S.-C. Wu, M.A. Makhraja, K.-C. Lo, A.-C. Yeh, K. Yoshimi, C. Zhang, and S.-K. Lin, S.-Y. Yen, S.-C. Wu, M.A. Makhraja, K.-C. Lo, A.-C. Yeh, K. Yoshimi, C. Zhang, and S.-K. Lin, Phase Equilibria and Thermodynamic Assessment of the Mo-Nb-Re Ternary System, Calphad, 2020, 70, p 101797

    Article  Google Scholar 

  14. K.P. Gupta, K.P. Gupta, The Co-Cr-Nb (Cobalt-Chromium-Niobium) System, J. Phase Equilib. Diffus., 2006, 27(2), p 173–177

    Google Scholar 

  15. N.I. Kaloev, E.M. Sokolovskaya, A.K. Abramyan, and R.V. Kalagova, N.I. Kaloev, E.M. Sokolovskaya, A.K. Abramyan, and R.V. Kalagova, Isothermal Section of the Co-Cr-Nb System at 1273 K, Sov. Non-Ferr. Met. Res., 1986, 14, p 503–505

    Google Scholar 

  16. X. Zhang, S. Yang, C. Zhao, Y. Lu, X. Liu, and C. Wang, X. Zhang, S. Yang, C. Zhao, Y. Lu, X. Liu, and C. Wang, Experimental Investigation of Phase Equilibria in the Co-Cr-Nb System at 1000, 1100, and 1200 A degrees C, J. Phase Equilib. Diffus., 2013, 34(4), p 313–321

    Article  Google Scholar 

  17. F. Putland, T. Chart, and A. Dinsdale, F. Putland, T. Chart, and A. Dinsdale, Thermodynamically Calculated Phase-Diagrams for the Co-Cr-Ta and Co-Cr-Nb System, Calphad, 1980, 4(2), p 133–141

    Article  Google Scholar 

  18. L. Kaufman, and H. Nesor, L. Kaufman, and H. Nesor, Calculation of Superalloy Phase Diagrams: Part III, Metall. Mater. Trans. A, 1975, 6, p 2115–2122

    Article  ADS  Google Scholar 

  19. F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, and G. Kreiner, F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, and G. Kreiner, Experimental Reinvestigation of the Co-Nb Phase Diagram, Intermetallics, 2008, 16(6), p 785–792

    Article  Google Scholar 

  20. C. Allibert, C. Bernard, N. Valignat, and M. Dombre, C. Allibert, C. Bernard, N. Valignat, and M. Dombre, Co-Cr Binary System: Experimental Re-Determination of the Phase Diagram and Comparison with the Diagram Calculated from the Thermodynamic Data, J. Less Common Met., 1978, 59(2), p 211–228

    Article  Google Scholar 

  21. C. He, F. Stein, and M. Palm, C. He, F. Stein, and M. Palm, Thermodynamic Description of the Systems Co-Nb, Al-Nb and Co-Al-Nb, J. Alloys Compd., 2015, 637, p 361–375

    Article  Google Scholar 

  22. Y. Peng, P. Zhou, M. Bu, W. Zhang, and Y. Du, Y. Peng, P. Zhou, M. Bu, W. Zhang, and Y. Du, A Thermodynamic Evaluation of the C-Cr-Nb System, Calphad, 2016, 53, p 10–19

    Article  Google Scholar 

  23. K. Oikawa, G.W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida, K. Oikawa, G.W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida, Direct Evidence of Magnetically Induced Phase Separation in the fcc Phase and Thermodynamic Calculations of Phase Equilibria of the Co-Cr System, Acta Mater., 2002, 50(9), p 2223–2232

    Article  ADS  Google Scholar 

  24. D.J. Thoma, and J.H. Perepezko, D.J. Thoma, and J.H. Perepezko, An Experimental Evaluation of the Phase Relationships and Solutilities in the Nb-Cr System, Mater. Sci. Eng. A, 1992, 156, p 97–108

    Article  Google Scholar 

  25. J.K. Pargeter, and W. Hume-Rothery, J.K. Pargeter, and W. Hume-Rothery, The Constitution of Niobium-Cobalt Alloys, J. Less Common Met., 1967, 12(5), p 366–374

    Article  Google Scholar 

  26. S.K. Bataleva, V.V. Kuprina, and V.Y. Markiv, Phase Diagram of Niobium-Cobalt System, 1970, in Russian

  27. K.C.H. Kumar, I. Ansara, P. Wollants, and L. Delaey, K.C.H. Kumar, I. Ansara, P. Wollants, and L. Delaey, Thermodynamic Optimisation of the Co-Nb System, J. Alloys Compd., 1998, 267(1), p 105–112

    Article  Google Scholar 

  28. J.G. Costa, S.G. Fries, H.L. Lukas, S. Gama, and G. Effenberg, J.G. Costa, S.G. Fries, H.L. Lukas, S. Gama, and G. Effenberg, Thermodynamic Optimisation of the Nb-Cr System, Calphad, 1993, 17(3), p 219–228

    Article  Google Scholar 

  29. J. Pavlů, J. Vřešt’ál, and M. Šob, J. Pavlů, J. Vřešt’ál, and M. Šob, Re-modeling of Laves Phases in the Cr-Nb and Cr-Ta Systems Using First-Principles Results, Calphad, 2009, 33(1), p 179–186

    Article  Google Scholar 

  30. J. Aufrecht, A. Leineweber, A. Senyshyn, and E.J. Mittemeijer, J. Aufrecht, A. Leineweber, A. Senyshyn, and E.J. Mittemeijer, The Absence of a Stable Hexagonal Laves Phase Modification (NbCr2) in the Nb-Cr System, Scr. Mater., 2010, 62(5), p 227–230

    Article  Google Scholar 

  31. A. Leineweber, J. Aufrecht, A. Senyshyn, and E.J. Mittemeijer, A. Leineweber, J. Aufrecht, A. Senyshyn, and E.J. Mittemeijer, Reply to Comments on the Absence of a Stable Hexagonal Laves Phase Modification (NbCr2) in the Nb-Cr System, Scr. Mater., 2011, 64(10), p 994–997

    Article  Google Scholar 

  32. C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, C. Schmetterer, A. Khvan, A. Jacob, B. Hallstedt, and T. Markus, A New Theoretical Study of the Cr-Nb System, J. Phase Equilib. Diffus., 2014, 35(4), p 434–444

    Article  Google Scholar 

  33. L.K.H. Nesor, L.K.H. Nesor, Calculation of Superalloy Phase Diagrams: Part III, Metall. Mater. Trans. A, 1975, 6, p 2115–2122

    Article  ADS  Google Scholar 

  34. A. Kusoffsky, and B. Jansson, A. Kusoffsky, and B. Jansson, A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr Systems, Calphad, 1997, 21(3), p 321–333

    Article  Google Scholar 

  35. J. Vreštzál, J. Pavlů, and M. Sob, J. Vreštzál, J. Pavlů, and M. Sob, Energetics and Phase Diagrams of Fe-Cr and Co-Cr Systems from First Principles, J. Min. Metall. B, 2002, 38, p 205–211

    Article  Google Scholar 

  36. J. Houserová, J. Vešál, M. Friák, and M. Šob, J. Houserová, J. Vešál, M. Friák, and M. Šob, Phase Diagram Calculation in Co-Cr System Using Ab Initio Determined Lattice Instability of Sigma Phase, Calphad, 2002, 26(4), p 513–522

    Article  Google Scholar 

  37. A. Pundt, and C. Michaelsen, A. Pundt, and C. Michaelsen, Magnetically Induced Decomposition in Co-Cr Thin-Film and Bulk Alloys, Phys. Rev. B, 1997, 56, p 14352–14359

    Article  ADS  Google Scholar 

  38. A.T. Dinsdale, A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317–425

    Article  Google Scholar 

  39. M. Hillert, and M. Jarl, M. Hillert, and M. Jarl, A Model for Alloying in Ferromagnetic Metals, Calphad, 1978, 2(3), p 227–238

    Article  Google Scholar 

  40. B. Jansson, Ph. D. Thesis, Division of Physical Metallurgy, The Royal Institute of Technology, Stockholm, Sweden, 1984

  41. B. Sundman, B. Jansson, and J. Anderson, B. Sundman, B. Jansson, and J. Anderson, CALPHAD, Computer Coupling of Phase Diagrams and Thermochemistry, Calphad, 1985, 9, p 153

    Article  Google Scholar 

  42. X.J. Liu, Z.P. Jiang, C.P. Wang, and K. Ishida, X.J. Liu, Z.P. Jiang, C.P. Wang, and K. Ishida, Experimental Determination and Thermodynamic Calculation of the Phase Equilibria in the Cu-Cr-Nb and Cu-Cr-Co Systems, J. Alloys Compd., 2009, 478(1), p 287–296

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51831007) and National Key R&D Program of China (Grant No. 2017YFB0702901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. X. Huang or C. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.J., Zhang, Q.Q., Lu, Y. et al. Thermodynamic Assessment of the Co-Cr-Nb System. J. Phase Equilib. Diffus. 42, 217–230 (2021). https://doi.org/10.1007/s11669-021-00875-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00875-z

Keywords

Navigation