Skip to main content

Advertisement

Log in

The Galerkin Method and Regularization for Variational Inequalities in Reflexive Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the convergence of the Galerkin method and regularization for variational inequalities with pseudomonotone operators in the sense of Brézis. Namely, we prove that under certain conditions, the solutions of the Galerkin equations and regularized variational inequalities converge strongly to a solution of the original variational inequality in reflexive Banach spaces. An application for obstacle problems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Bnouhachem, A., Noor, M.A., Khalfaoui, M., Sheng, Z.: On a new numerical method for solving general variational inequalities. Internat. J. Modern Phys. B 25, 4443–4455 (2011)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriel en dualité. Ann. Inst. Fourier 18, 115–175 (1968)

    Article  Google Scholar 

  5. Browder, F.E.: Fixed point theory and nonlinear problems. Bull. AMS 9, 1–39 (1983)

    Article  MathSciNet  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998)

    MATH  Google Scholar 

  7. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984)

    Book  Google Scholar 

  8. Han, W., Zeng, S.: On convergence of numerical methods for variational-hemivariational inequalities under minimal solution regularity. Appl. Math. Lett. 93, 105–110 (2019)

    Article  MathSciNet  Google Scholar 

  9. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MathSciNet  Google Scholar 

  10. Kien, B.T.: The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space. Acta Math. Vietnamica 27, 53–67 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Kien, B.T., Wong, M.M., Wong, N.C., Yao, J.C.: Solution existence of variational inequalities with pseudomonotone operators in the sense of Brézis. J. Optim. Theory Appl. 140, 249–263 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kien, B.T., Yao, J.C., Yen, N.D.: On the solution existence of pseudomonotone variational inequalities. J. Global Optim. 41, 135–145 (2008)

    Article  MathSciNet  Google Scholar 

  13. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  14. Lions, J.L.: Numerical methods for variational inequalities—applications in physics and in control theory, Information processing 77 (Proc. IFIP Congr., Toronto, Ont., 1977), pp. 917-924. IFIP Congr. Ser., Vol. 7, North-Holland, Amsterdam (1977)

  15. Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäser, Basel (2013)

    Book  Google Scholar 

  16. Wang, F., Hang, W., Cheng, X.L.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48, 708–733 (2010)

    Article  MathSciNet  Google Scholar 

  17. Xiao, B., Harker, P.T.: A nonsmooth Newton method for variational inequalities. II. Numerical results, Math. Programming 65, Ser. A, 195-216 (1994)

  18. Yao, J.C.: Variational inequalities with generalized monotone operators. Math. Oper. Res. 19, 691–705 (1994)

    Article  MathSciNet  Google Scholar 

  19. Yen, N.D.: A result related to Ricceri’s conjecture on generalized qusi-variational inequalities. Arch. Math. 69, 507–514 (1997)

    Article  Google Scholar 

  20. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer-Verlag, Berlin (1990)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their suggestions and comments which improved the paper greatly. The research of C.F. Wen was funded by Ministry of Science and Technology, Taiwan, under grant number 109-2115-M-037-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Feng Wen.

Additional information

Communicated by Akhtar A. Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kien, B.T., Qin, X., Wen, CF. et al. The Galerkin Method and Regularization for Variational Inequalities in Reflexive Banach Spaces. J Optim Theory Appl 189, 578–596 (2021). https://doi.org/10.1007/s10957-021-01844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01844-9

Keywords

Mathematics Subject Classification

Navigation