Skip to main content
Log in

Stress State Inferred from b Value and Focal Mechanism Distributions in the Aftershock Area of the 2005 West Off Fukuoka Prefecture Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The spatiotemporal stress states in the aftershock region of the 2005 West Off Fukuoka Prefecture Earthquake are examined via an analysis of the b values and focal mechanism solutions. The aftershocks are aligned roughly NW–SE, with the southeastern part of the aftershock region believed to correspond to the Kego Fault, which extends beneath the Fukuoka metropolitan area. This study reveals depth-dependent b values in the focal region, where the b values (b = 0.7–1.4) are generally higher above the mainshock depth (9.5 km) and lower (b = 0.5–1.0) at greater depths. The shallower region possesses a significant temporal increase in b values, whereas a lateral b value heterogeneity is observed in the deeper region. The b values (b ~ 1.0) near the mainshock are relatively high, whereas the northwestern and southeastern edges of the deep region have lower b values (b = 0.5–0.7). On the other hand, many of the focal mechanisms for the \(M\ge 3.5\) events are located in the low b value area of the deep region. The stress tensor inversion results reveal a change in stress state from strike-slip to strike-slip/normal faulting. These findings imply that the stress state remains high and/or slightly decreased in the northwestern and southeastern parts of the deep region. These results and the findings of previous research on this earthquake sequence suggest that the likelihood of future large earthquakes along the southeastern part of the aftershock region should be considered relatively high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula logN = abM and its confidence limits. Bulletin of Earthquake Research Institute of the University of Tokyo, 43, 237–239.

    Google Scholar 

  • Asano, K., & Iwata, T. (2006). Source process and near-source ground motions of the 2005 West Off Fukuoka Prefecture Earthquake. Earth, Planets and Space, 58(1), 93–98.

    Article  Google Scholar 

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological. Magazine, 96, 109–117.

    Article  Google Scholar 

  • Byerlee, J. (1978). Friction of rock. Pure and Applied Geophysics, 116, 615–4626.

    Article  Google Scholar 

  • Chiba, K. (2019). Spatial and temporal distributions of b values related to long-term slow-slip and low-frequency earthquakes in the Bungo Channel and Hyuga-nada regions, Japan. Tectonphysics, 757, 1–9. https://doi.org/10.1016/j.tecto.2019.02.021

    Article  Google Scholar 

  • Chiba, K. (2020). Stress state along the western Nankai Trough subduction zone inferred from b values, long-term slow slip events, and low frequency earthquakes. Earth, Planets and Space, 72, 3. https://doi.org/10.1186/s40623-020-1130-7

    Article  Google Scholar 

  • Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research, 99(B2), 2601–2618. https://doi.org/10.1029/93JB02581

    Article  Google Scholar 

  • El-Isa, Z. H., & Eaton, D. W. (2014). Spatiotemporal variations in the b value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophysics, 615–616, 1–11. https://doi.org/10.1016/j.tecto.2013.12.001

    Article  Google Scholar 

  • Frohlich, C., & Davis, S. (1993). Teleseismic b values; or, much ado about 1.0. Journal of Geophysical Research, 98(B1), 631–644.

    Article  Google Scholar 

  • Geospatial Information Authority of Japan. (2006). Crustal deformation and a fault mode of the West-off Fukuoka Prefecture Earthquake in 2005. https://www.gsi.go.jp/common/000025591.pdf(in Japanese).

  • Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89, 9305–9320.

    Article  Google Scholar 

  • Ghosh, A., Newman, A. V., Thomas, A. M., & Farmer, G. T. (2008). Interface locking along the subduction megathrust from b value mapping near Nicoya Peninsula, Costa Rica. Geophysical Research Letters, 35, L01301. https://doi.org/10.1029/2007GL031617

    Article  Google Scholar 

  • Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574, 193–199. https://doi.org/10.1038/s41586-019-1606-4

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Hardebeck, J. L., & Hauksson, E. (2001). Crustal stress field in southern California and its implications for fault mechanics. Journal of Geophysical Research, 106(B10), 21859–21882.

    Article  Google Scholar 

  • Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research, 111, B11310. https://doi.org/10.1029/2005JB004144

    Article  Google Scholar 

  • Horikawa, H. (2006). Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake. Earth, Planets and Space, 58, 87–92.

    Article  Google Scholar 

  • Iio, Y., Katao, H., Ueno, T., Enescu, B., Hirano, N., Okada, T., Uchida, N., Matsumoto, S., Matsuhima, T., Uehira, K., & Shimizu, H. (2006). Spatial distribution of seismic stress drops for aftershocks of the 2005 West Off Fukuoka Prefecture Earthquake. Earth, Planets and Space, 58, 1611–1615.

    Article  Google Scholar 

  • Ishimoto, M., & Iida, K. (1939). Observations sur les seisms enregistré par le microseismograph construit demiement. Bulletin of the Earthquake Research Institute, Tokyo Imperial University, 17, 443–478.

    Google Scholar 

  • Jaeger, J., & Cook, N. G. W. (1979). Fundamental of Rock Mechanics (3rd ed.). Chapman and Hall.

    Google Scholar 

  • Martinez-Garzon, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling and a visualization tool. Seismological Research Letters, 85, 4. https://doi.org/10.1785/0220130189

    Article  Google Scholar 

  • Matsumoto, S., Uehira, K., Watanabe, A., Goto, K., Iio, Y., Hirata, N., Okada, T., Takahashi, H., Shimizu, H., Shinohara, M., & Kanazawa, T. (2009). High resolution Q-1 estimation based on extension of coda normalization method and its application to P-wave attenuation structure in the aftershock area of the 2005 West Off Fukuoka Prefecture Earthquake (M 7.0). Geophysical Journal International, 179, 1039–1054. https://doi.org/10.1111/j.1365-246X.2009.04313.x

    Article  Google Scholar 

  • Matsumoto, T., Ito, Y., Matsubayashi, H., & Sekiguchi, S. (2006). Spatial distribution of F-net moment tensors of the 2005 West Off Fukuoka Prefecture Earthquake determined by the extended method of the NIED F-Net routine. Earth Planets Space, 58, 63–67.

    Article  Google Scholar 

  • Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research, 89, 11517–11526.

    Article  Google Scholar 

  • Michael, A. J. (1987). Stress rotation during the Coalinga aftershock sequence. Journal of Geophysical Research, 92, 7963–7979.

    Article  Google Scholar 

  • Mogi, K. (1962). Magnitude-Frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, University of Tokyo, 40, 831–853.

    Google Scholar 

  • Nakao, S., Takahashi, H., Matsushima, T., Kohno, Y., & Ichiyanagi, M. (2006). Postseismic deformation following the 2005 West Off Fukuoka Prefecture Earthquake (M7.0) derived by GPS observation. Earth Planets Space, 58, 1617–1620.

    Article  Google Scholar 

  • Nanjo, K. Z., Ishibe, T., Tsuruoka, D., Schorlemmer, D., Ishigaki, Y., & Hirata, N. (2010). Analysis of the completeness magnitude and seismic network coverage of Japan. Bulletin of the Seismological Society of America, 100(6), 3261–3268. https://doi.org/10.1785/0120100077

    Article  Google Scholar 

  • Nanjo, K. Z., Izutsu, J., Orihara, Y., Furuse, N., Togo, S., Nitta, H., Okada, T., Tanaka, R., Kamogawa, M., & Nagao, T. (2016). Seismicity prior to the 2016 Kumamoto earthquakes. Earth, Planets and Space, 68, 187. https://doi.org/10.1186/s40623-016-0558-2

    Article  Google Scholar 

  • Nanjo, K. Z., & Yoshida, A. (2018). A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nature Communications, 9, 1117. https://doi.org/10.1038/s41467-018-03514-3

    Article  Google Scholar 

  • Nanjo, K. Z., Izutsu, J., Orihara, Y., Kamogawa, Y., & Nagano, T. (2019). Changes in seismicity pattern due to the 2016 Kumamoto Earthquakes identify a highly stressed area on the Hinagu fault zone. Geophysical Research Letters, 46, 16. https://doi.org/10.1029/2019GL083463

    Article  Google Scholar 

  • National Institute of Advanced Industrial Science and Technology. (2005). Change in future earthquake probability due to fault interaction. https://www.aist.go.jp/Portals/0/resource_images/aist_j/aistinfo/aist_today/vol05_05/vol05_05_p14_15.pdf(in Japanese).

  • Nishimura, T., Fujiwara, S., Murakami, M., Suito, H., Tobita, M., & Yarai, H. (2006). Fault model of the 2005 Fukuoka-ken Seiho-oki earthquake estimated from coseismic deformation observed by GPS and InSAR. Earth, Planets and Space, 58, 51–56.

    Article  Google Scholar 

  • Okamura, M., Matsuoka, H., Nakashima, T., Nakata, T., Chida, N., Hirata, K., & Shimazaki, K. (2009). Holocene Paleoseismicity on Kego Fault in Hakata Bay, Northern Kyushu, Japan. Zisin, 2(61), 175–190. (in Japanese).

    Article  Google Scholar 

  • Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399–415.

    Google Scholar 

  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42, 1399–1402. https://doi.org/10.1002/2014GL062863

    Article  Google Scholar 

  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2004). Earthquake statistics at Parkfield: 1. Stationarity of b values. Journal of Geophysical Research, 109, B12307. https://doi.org/10.1029/2004JB003234

    Article  Google Scholar 

  • Schorlemmer, D., & Wiemer, S. (2005). Microseismicity data forecast rupture area. Nature, 434, 1086. https://doi.org/10.1038/4341086a

    Article  Google Scholar 

  • Shimizu, H., Takahashi, T., Okada, T., Kanazawa, T., Iio, Y., Miyamachi, H., Matsushima, T., Ichiyanagi, N., Uchida, N., Iwasaki, T., Katao, H., Goto, K., Matsumoto, S., Hirata, N., Nakao, S., Uehira, K., Shinohara, M., Yakiwara, H., Kame, T., … Hori, M. (2006). Aftershock seismicity and fault structure of the 2005 West Off Fukuoka Prefecture Earthquake (MJMA 7.0) derived from urgent joint observations. Earth, Planets and Space, 58, 1599–1604.

    Article  Google Scholar 

  • Shimoyama, S., Iso, N., Matsuda, T., Ichihara, T., Chida, N., Okamura, M., Mogi, T., Suzuki, S., Ochiai, H., Nagasawa, S., Imanishi, H., Kawabata, F., Yakabe, H., Ooteki, M., & Matsuura, K. (2005). Trenching study at Yaukuin site across the Kego fault, Fukuoka City, West Japan. Active Fault Research, 25, 117–128.

    Google Scholar 

  • Smith, W. D. (1981). The b value as an earthquake precursor. Nature, 289, 136–139. https://doi.org/10.1038/289136a0

    Article  Google Scholar 

  • The Research Group for Active Faults of Japan. (1991). Active Faults in Japan (revised edition) (p. 488). Tokyo: University of Tokyo Press. (in Japanese).

    Google Scholar 

  • Tormann, T., Enescu, B., Woessener, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2), 152–158. https://doi.org/10.1038/ngeo2343

    Article  Google Scholar 

  • Uehira, K., Yamada, T., Shinohara, M., Nakahigashi, K., Miyamachi, H., Iio, Y., Okada, T., Takahashi, H., Matsuwo, N., Uchida, K., Kanazawa, T., & Shimizu, H. (2006). Precise aftershock distribution of the 2005 West Off Fukuoka Prefecture Earthquake (Mj = 7.0) using a dense onshore and offshore seismic network. Earth Planets and Space, 58, 1605–1610.

    Article  Google Scholar 

  • Urbancic, T. I., Trifu, C. I., Long, J. M., & Young, R. P. (1992). Space-time correlations of b values with stress release. Pure and Applied Geophysics, 139(3), 449–462.

    Article  Google Scholar 

  • Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysics, 30, 521–605.

    Google Scholar 

  • Utsu, T. (1992). On seismicity, in Report of Cooperative Research of the Institute of Statistical Mathematics. The Institute of Statistical Mathematics Tokyo, 34, 139–157.

    Google Scholar 

  • Utsu, T. (1999). Representation and analysis of the earthquake size distribution: A historical review and some approaches. Pure and Applied Geophysics, 155, 509–535.

    Article  Google Scholar 

  • Wallace, R. E. (1951). Geometry of shearing stress and relationship to faulting. The Journal of Geology, 59, 111–130.

    Article  Google Scholar 

  • Wang, Z., & Zhao, D. (2006). Seismic evidence for the influence of fluids on the 2005 west off Fukuoka prefecture earthquake in southwest Japan. Physics of the Earth and Planetary Interiors, 155, 313–324.

    Article  Google Scholar 

  • Warren, N. W., & Latham, G. V. (1970). An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75, 4455–4464. https://doi.org/10.1029/JB075i023p04455

    Article  Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R. R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union, 94, 409–410. https://doi.org/10.1002/2013EO450001

    Article  Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Article  Google Scholar 

  • Wiemer, S., McNutt, S. R., & Wyss, M. (1998). Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California. Geophysical Journal International, 134, 409–421. https://doi.org/10.1406/j.1365-246x.1998.00561.x

    Article  Google Scholar 

  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–498. https://doi.org/10.1785/0120040007

    Article  Google Scholar 

  • Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal of the Royal Astronomical Society, 31, 341–359. https://doi.org/10.1111/j.1365-246X.1973.tb06506.x

    Article  Google Scholar 

Download references

Acknowledgements

The author used data from the Japan Meteorological Agency (JMA) unified earthquake catalog (https://www.data.jma.go.jp/svd/eqev/data/bulletin/index.html). The ZMAP MATLAB software package (Wiemer 2001) (http://www.seismo.ethz.ch/static/stat_2010_website/stat-website-pre2010/www.earthquake.ethz.ch/software/zmap.html) was used for the b value analysis. The figures were prepared using the Generic Mapping Tools software package (Wessel et al. 2013). This study was partially funded by Tokio Marine Kagami Memorial Foundation, Japan (EAKF320500). The author thanks the editor Carla Braitenberg and two anonymous reviewers for helping to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Chiba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, K. Stress State Inferred from b Value and Focal Mechanism Distributions in the Aftershock Area of the 2005 West Off Fukuoka Prefecture Earthquake. Pure Appl. Geophys. 178, 1165–1179 (2021). https://doi.org/10.1007/s00024-021-02691-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02691-5

Keywords

Navigation