Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spooling electrochemiluminescence spectroscopy: development, applications and beyond

Abstract

One of the most widely used techniques to generate light through an efficient electron transfer is called electrochemiluminescence, or electrogenerated chemiluminescence (ECL). ECL mechanisms can be explored via ‘spooling spectroscopy’ in which individual ECL spectra showing emitted light are collected continuously during a potentiodynamic course. The obtained spectra are spooled together and plotted along the applied potential axis; because the potential sweep occurs at a defined rate, this axis is directly proportional to time. Any changes in the emission spectra can be correlated to the corresponding potentials and/or times, leading to a deeper understanding of the mechanism for light generation—information that can be used for efficiently maximizing ECL intensities. The formation of intermediates and excited states can also be tracked, which is crucial to interrogating and drawing electron transfer pathways (i.e., understanding the chemical reaction mechanism). Spooling spectroscopy is not limited to ECL; we also include instructions for the use of related methodologies, such as spooling photoluminescence spectroscopy during an electrolysis procedure, which can be easily set up. The total time required to complete the protocol is ~49 h, from making electrodes and an ECL cell, fabricating light-tight housing, to setting up instruments. Preparing the lab for an individual experiment (making an electrolyte solution of a targeted luminophore, cooling down the CCD camera, calibrating the spectrometer and surveying electrochemistry) takes ~1 h 15 min, and performing the spooling ECL spectroscopy experiment itself requires ~10 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spooling spectroscopy setup.
Fig. 2: Required components to assemble a light-tight ECL cell.
Fig. 3: Photograph of a typical platinum working electrode.
Fig. 4: A typical ECL cell.
Fig. 5: Fabrication of ECL cell cap.
Fig. 6: Schematic representation of an ECL cell holder.
Fig. 7: Potentiostat and camera synchronization setup details.
Fig. 8: Spooling photoluminescence spectroscopy setup.
Fig. 9: An example cyclic voltammogram.
Fig. 10: An illustration of a home-made polishing wheel.
Fig. 11
Fig. 12: Exemplary spooling ECL spectra.
Fig. 13: In situ spooling photoluminescence spectroscopy.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article. A simple sample spooling ECL spectroscopy figure in MATLAB for Ru(bpy)32+ in the presence of 5 mM tri-n-propylamine (TPrA) and its user guide (‘Spooling ECL spectroscopy plot of 0.1 mM Ru(bpy)32+ with 5 mM TPrA using MATLAB’ and ‘Manual to use spooling ECL spectroscopy of Ru(bpy) with TPrA’, respectively) are included in Supplementary Data 1. The spooling ECL spectrum source data in ‘acs’ format and other advanced plotting codes in MATLAB and spreadsheet software Igor are available from the corresponding authors upon request. The data relating to this protocol can be found in this paper and the supporting primary research papers. See the Supplementary Data 1 for data relating to Figs. 9 and 12a. The MATLAB code used in this protocol can be found in the Supplementary Information.

References

  1. Hesari, M. & Ding, Z. Review—electrogenerated chemiluminescence: light years ahead. J. Electrochem. Soc. 163, H3116–H3131 (2016).

    Article  CAS  Google Scholar 

  2. Zhou, X. et al. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat. Protoc. 9, 1146–1159 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Acharya, D. et al. An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Sci. Rep. 6, 32227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hesari, M. & Ding, Z. A grand avenue to Au nanocluster electrochemiluminescence. Acc. Chem. Res. 50, 218–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Z., Qi, W. & Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 44, 3117–3142 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Kalyuzhny, G., Buda, M., McNeill, J., Barbara, P. & Bard, A. J. Stability of thin-film solid-state electroluminescent devices based on tris(2,2‘-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 125, 6272–6283 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Swanick, K. N., Hesari, M., Workentin, M. S. & Ding, Z. Interrogating near-infrared electrogenerated chemiluminescence of Au25(SC2H4Ph)18+ clusters. J. Am. Chem. Soc. 134, 15205–15208 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Swanick, K. N., Ladouceur, S., Zysman-Colman, E. & Ding, Z. Self-enhanced electrochemiluminescence of an iridium(III) complex: mechanistic insight. Angew. Chem. Int. Ed. 51, 11079–11082 (2012).

    Article  CAS  Google Scholar 

  9. Hesari, M., Ding, Z. & Workentin, M. S. Electrogenerated chemiluminescence of monodisperse Au144(SC2H4Ph)60 clusters. Organometallics 33, 4888–4892 (2014).

    Article  CAS  Google Scholar 

  10. Hesari, M., Workentin, M. S. & Ding, Z. Near-infrared electrochemiluminescence from Au25(SC2H4Ph)18+ clusters co-reacted with tri-n-propylamine. RSC Adv 4, 29559–29562 (2014).

    Article  CAS  Google Scholar 

  11. Hesari, M., Workentin, M. S. & Ding, Z. Highly efficient electrogenerated chemiluminescence of Au38 nanoclusters. ACS Nano 8, 8543–8553 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Hesari, M., Workentin, M. S. & Ding, Z. NIR electrochemiluminescence from Au25 nanoclusters facilitated by highly oxidizing and reducing co-reactant radicals. Chem. Sci. 5, 3814–3822 (2014).

    Article  CAS  Google Scholar 

  13. Hesari, M., Workentin, M. S. & Ding, Z. Thermodynamic and kinetic origins of Au250 nanocluster electrochemiluminescence. Chem. Eur. J. 20, 15116–15121 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, Z. et al. High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters. ACS Nano 14, 4973–4981 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, W. et al. Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat. Protoc. 8, 439–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, R. et al. Wireless nanopore electrodes for analysis of single entities. Nat. Protoc. 14, 2015–2035 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Ma, W., Ma, H., Peng, Y. Y., Tian, H. & Long, Y. T. An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nat. Protoc. 14, 2672–2690 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Chu, K. et al. Electrogenerated chemiluminescence and electroluminescence of n-doped graphene quantum dots fabricated from an electrochemical exfoliation process in nitrogen-containing electrolytes. Chem. Eur. J. 26, 15892–15900 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Ding, Z. et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wong, J. M. et al. Revealing crystallization induced blue shift emission of a di-boron complex by enhanced photoluminescence and electrochemiluminescence. Angew. Chem. Int. Ed. 59, 17461–17466 (2020).

    Article  CAS  Google Scholar 

  22. Hesari, M., Lu, J.-s, Wang, S. & Ding, Z. Efficient electrochemiluminescence of a boron-dipyrromethene (BODIPY) dye. Chem. Commun. 51, 1081–1084 (2015).

    Article  CAS  Google Scholar 

  23. Hesari, M. et al. Structural tuning of boron difluoride formazanate electrochemiluminescence mediated by tri-n-propylamine. J. Phys. Chem. C 122, 1258–1266 (2018).

    Article  CAS  Google Scholar 

  24. Hesari, M., Barbon, S. M., Staroverov, V. N., Ding, Z. & Gilroy, J. B. Efficient electrochemiluminescence of a readily accessible boron difluoride formazanate dye. Chem. Commun. 51, 3766–3769 (2015).

    Article  CAS  Google Scholar 

  25. Hercules, D. M. Chemiluminescence resulting from electrochemically generated species. Science 145, 808–809 (1964).

    Article  CAS  PubMed  Google Scholar 

  26. Chandross, E. A. & Sonntag, F. I. A novel chemiluminescent electron-transfer reaction. J. Am. Chem. Soc. 86, 3179–3180 (1964).

    Article  CAS  Google Scholar 

  27. Santhanam, K. S. V. & Bard, A. J. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J. Am. Chem. Soc. 87, 139–140 (1965).

    Article  CAS  Google Scholar 

  28. Collinson, M. M. & Wightman, R. M. Observation of individual chemical reactions in solution. Science 268, 1883–1885 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Richter, M. M. Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, C., Cao, Y., Gou, X. & Zhu, J.-J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 92, 431–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Qi, H. & Zhang, C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 92, 524–534 (2019).

    Article  PubMed  Google Scholar 

  33. Voci, S. et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J. Am. Chem. Soc. 140, 14753–14760 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ouyang, J. & Bard, A. J. Electrogenerated chemiluminescence: Part IL. Emission from acetonitrile solutions containing no added luminescors. J. Electroanal. Chem. 222, 331–342 (1987).

    Article  CAS  Google Scholar 

  35. Shen, M. et al. Electrochemistry and electrogenerated chemiluminescence of a novel donor−acceptor FPHSPFN red fluorophore. J. Phys. Chem. C 114, 9772–9780 (2010).

    Article  CAS  Google Scholar 

  36. Guo, W. et al. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 140, 15904–15915 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. He, Y., Yang, L., Zhang, F., Zhang, B. & Zou, G. Tunable electron-injection channels of heterostructured ZnSe@CdTe nanocrystals for surface-chemistry-involved electrochemiluminescence. J. Phy. Chem. Lett. 9, 6089–6095 (2018).

    Article  CAS  Google Scholar 

  38. Kang, Y. & Kim, J. Electrochemiluminescence of glutathione-stabilized Au nanoclusters fractionated by gel electrophoresis in water. ChemElectroChem 7, 1092–1096 (2020).

    Article  CAS  Google Scholar 

  39. Yang, F. et al. 3D matrix-arranged AuAg nanoclusters as electrochemiluminescence emitters for click chemistry-driven signal switch bioanalysis. Anal. Chem. 92, 2566–2572 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hesari, M. et al. Highly efficient dual-color electrochemiluminescence from BODIPY-capped PbS nanocrystals. J. Am. Chem. Soc. 137, 11266–11269 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hesari, M. et al. Enhancing electrochemiluminescence of chalcogenide clusters by means of Mn replacement. Electrochimica Acta 210, 79–86 (2016).

    Article  CAS  Google Scholar 

  42. Maar, R. R. et al. Aluminum complexes of N2O23– formazanate ligands supported by phosphine oxide donors. Inorg. Chem. 56, 12436–12447 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, J. M., Jeong, S., Song, J. K. & Kim, J. Near-infrared electrochemiluminescence from orange fluorescent Au nanoclusters in water. Chem. Commun. 54, 2838–2841 (2018).

    Article  CAS  Google Scholar 

  44. Shu, J. et al. Potential-resolved multicolor electrochemiluminescence of N-(4-aminobutyl)-n-ethylisoluminol/tetra(4-carboxyphenyl)porphyrin/TiO2 nanoluminophores. Anal. Chem. 89, 12636–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Guo, W., Ding, H. & Su, B. Electrochemiluminescence of metallated porous organic polymers. J. Electroanal. Chem. 818, 176–180 (2018).

    Article  CAS  Google Scholar 

  46. Fu, L., Zhang, B., Fu, K., Gao, X. & Zou, G. Electrochemically lighting up luminophores at similar low triggering potentials with mechanistic insights. Anal. Chem. 92, 6144–6149 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamental and Applications 2nd edn (John Wiley & Sons, 2001).

  48. Doeven, E. H. et al. A potential-controlled switch ON/OFF mechanism for selective excitation in mixed electrochemiluminescent systems. Chem. Sci. 4, 977–982 (2013).

    Article  CAS  Google Scholar 

  49. Hogan, C. F., Francis, P. S. & Doven, E. H. Multicolour electrochemiluminescence. in Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays (ed. Sojic, N.) 200–246 (Royal Society of Chemistry, 2020).

  50. Climent, V. & Feliu, J. M. Cyclic voltammetry. in Encyclopedia of Interfacial Chemistry. (ed. Wandelt, K.) 48–74 (Elsevier, 2018).

Download references

Acknowledgements

Our special thanks go to J. Vanstone and his team in the Chemistry Electronic Shop who patiently helped us to build many custom parts for our lab, especially for our ECL instrumentation. We also thank the Department of Chemistry and ChemBio Store at The University of Western Ontario for quality support and services. We acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC, DG RGPIN-2013-201697, RGPIN-2018-06556, SPG STPGP-2016-493924 and several Research Tool and Instruments grants since 2002), Canada Foundation of Innovation/Ontario Innovation Trust (CFI/OIT, 9040), and Premier’s Research Excellence Award (PREA, 2003) for financial support of this research. We thank previous and present members of the Ding group for continuously using and developing the spooling ECL spectroscopy as well as the plotting codes. We appreciate the inspiring advice on the protocol submission from Y. Long.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and Z.D. conceived the writing plan and designed the research. M.H. took pictures to illustrate instruments and parts, and performed experiments. M.H. organized and summarized the figures. M.H. and Z.D. wrote the manuscript. Z.D. finalized and submitted the manuscript. All the authors were involved in discussions about the manuscript at all stages.

Corresponding authors

Correspondence to Mahdi Hesari or Zhifeng Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Joohoon Kim, Jun-Jie Zhu, Gui-Zheng Zou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hesari, M. et al. J. Am. Chem. Soc. 137, 11266–11269 (2015): https://pubs.acs.org/doi/10.1021/jacs.5b07633

Hesari, M., Workentin, M. S. & Ding, Z. ACS Nano 8, 8543–8553 (2014): https://pubs.acs.org/doi/10.1021/nn503176g

Hesari, M., Workentin, M. S. & Ding, Z. Chem. Sci. 5, 3814–3822 (2014): https://pubs.rsc.org/en/content/articlelanding/2014/SC/C4SC01086H#!divAbstract

Swanick, K. N., Hesari, M., Workentin, M. S. & Ding, Z. J. Am. Chem. Soc. 134, 15205–15208 (2012): https://doi.org/10.1021/ja306047u

Key data used in this protocol

Hesari, M., Workentin, M. S. & Ding, Z. ACS Nano. 8, 8543–8553 (2014): https://pubs.acs.org/doi/10.1021/nn503176g

Hesari, M. et al. J. Am. Chem. Soc. 137, 11266–11269 (2015): https://pubs.acs.org/doi/10.1021/jacs.5b07633

Hesari, M., Workentin, M. S. & Ding, Z. Chem. Sci. 5, 3814–3822 (2014): http://pubs.rsc.org/en/content/articlepdf/2014/sc/c4sc01086h

Extended data

Extended Data Fig. 1 Assembly of a platinum electrode inside a soft glass.

A vacuum tube is attached to one end of the soft glass to assist with Pt rod insertion into the other end.

Extended Data Fig. 2 Schematic assembly of ECL cell-focus lens-PMT.

A photograph of an exemplary ECL cell including WE (Pt disc), CE (Pt coil), RE (Pt coil), sample solution, quartz window, focus lens, and a PMT along with a recorder. Note that the represented distances are not scaled.

Extended Data Fig. 3 An illustration of optical filter position.

a, Top view of the spectrograph port where a filter is placed to block the excitation light source to perform a spooling photoluminescence spectroscopy. b, Side view of the filter and spectrograph port.

Extended Data Fig. 4 Spooling spectroscopy software setup.

A representative of an Andor iDus camera acquisition setup (red box), acquisition mode, exposure time and kinetic series length (pink boxes) are set as spooling, time interval between each spectrum, and total number of spectra. As a common example, experimental parameters related to spooling ECL spectroscopy of 0.1 mM [Ru(bpy)3](PF6)2 (Fig. 9) in the presence of 5 mM tri-n-propylyamine (TPrA) are displayed. The spooling ECL spectra are shown in Fig. 12a. In this exemplary experiment, the applied potential was scanned from 0.0 V to +1.5 V and back to 0.0 V vs. SCE where TPrA was oxidized at ~0.8 V to produce TPrA radicals. At the close potential, Ru(bpy)32+ lost one electron at ~1.1 to Ru(bpy)33+. The total time required for the cycle of potential scan is 30 sec. Thus, one can perform a spooling ECL spectroscopy of Ru(bpy)32+ / TPrA by setting up camera acquisition (red box) and selecting “kinetic” for acquisition mode (first pink box at left). Individual spooling spectra can be collected during 1 s of camera exposure time (second pink box at top left). Usually, the number of accumulations needs to be 1. Finally, “kinetic series length” (third pink box at left) represents total time required for an experiment to complete, which is 30 sec in the present example. The spectrum time interval is defined as the density of the collected spectra in time-space. The shorter the time interval, the higher the number of spectra. To set up a trigger, one needs to set the triggering option to “External Start” which means the camera will start to acquire a spectrum (according the setting) as soon as the external signal has been sent through the coaxial cable from the potentiostat.

Extended Data Fig. 5 Spooling spectroscopy software setup.

Before running a spooling spectroscopy experiment, choose the spooling tab (pink tab) in the acquisition setting (red box) and enable spooling. Next, select “Sif” (shown with arrow) as the file type (first green box at top left). One can choose a file name, e.g., “spool” which will be saved with a “.sif” extension. Lastly, select a path where the recorded file will be saved. Note 1: the last two steps can also be done manually. Note 2: all the recorded spooling files with “.sif” extension should be converted to “.acs” in order to be opened with Igor Pro or MATLAB for plotting.

Extended Data Fig. 6 Exemplary electrode junctions.

Photographs of assembled a, counter electrode, and b, reference electrode inside glass capillaries to protect CE and RE from possible side reactions.

Supplementary information

Reporting Summary

Supplementary Data 1

Manual to use spooling spectroscopy of Ru(bpy) with TPrA and sample spooling ECL plot using MATLAB software.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesari, M., Ding, Z. Spooling electrochemiluminescence spectroscopy: development, applications and beyond. Nat Protoc 16, 2109–2130 (2021). https://doi.org/10.1038/s41596-020-00486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00486-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing