Skip to main content

Advertisement

Log in

Body Composition Methods in Adults with Type 2 Diabetes or at Risk for T2D: a Clinical Review

  • Obesity (KM Gadde and P Singh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this study is to summarize anthropometric and advanced methods used to assess body composition in adults diagnosed with type 2 diabetes (T2D) or at risk for T2D that provide clinically relevant information about T2D disease-related complications or risk factors.

Recent Findings

Anthropometry is commonly used in clinical settings; however, provides unreliable estimates of fat mass, fat-free mass, and body fat distribution for metabolic health assessments compared to advanced techniques such as bioelectrical impedance analysis (BIA), dual-energy x-ray absorptiometry (DXA), computerized tomography (CT), and magnetic resonance imaging (MRI). Few studies report the clinical use of anthropometric and advanced body composition methods that identify T2D disease-related complications or T2D risk factors.

Summary

Anthropometry, BIA, DXA, CT, and MRI were used to estimate body adiposity and distribution, visceral and subcutaneous adipose tissue depots, and skeletal muscle mass. Review findings indicate that these methods were capable of identifying clinically relevant T2D disease-related complications such as sarcopenia and T2D risk factors such as obesity or regional adiposity. However, estimates were often sex and race/ethnicity specific warranting cross-validation of these methods in broader populations with T2D or risk for T2D prior to clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care. 2019;42(Supplement 1):S13. https://doi.org/10.2337/dc19-S002.

    Article  Google Scholar 

  2. Centers for Disease Control and Prevention. National diabetes statistics report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2020.

    Google Scholar 

  3. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72. https://doi.org/10.1097/MCO.0b013e32830b5f23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teigen LM, Kuchnia AJ, Mourtzakis M, Earthman CP. The use of technology for estimating body composition(strengths and weaknesses of common modalities in a clinical setting [Formula: see text]). Nutr Clin Pract. 2017;32(1):20–9. https://doi.org/10.1177/0884533616676264.

    Article  PubMed  Google Scholar 

  5. Mooney SJ, Baecker A, Rundle AG. Comparison of anthropometric and body composition measures as predictors of components of the metabolic syndrome in a clinical setting. Obes Res Clin Pract. 2012;7(1):e55–66. https://doi.org/10.1016/j.orcp.2012.10.004.

    Article  Google Scholar 

  6. Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring). 2010;18(11):2191–8. https://doi.org/10.1038/oby.2010.59.

    Article  Google Scholar 

  7. Vanderwood KK, Kramer MK, Miller RG, Arena VC, Kriska AM. Evaluation of non-invasive screening measures to identify individuals with prediabetes. Diabetes Res Clin Pract. 2015;107(1):194–201. https://doi.org/10.1016/j.diabres.2014.06.003.

    Article  PubMed  Google Scholar 

  8. Battezzati A, Bertoli S, Testolin C, Testolin G. Body composition assessment: an indispensable tool for disease management. Acta Diabetol. 2003;40(1):s151–s3.

    Article  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG, The Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anbalagan VP, Venkataraman V, Pradeepa R, Deepa M, Anjana RM, Mohan V. The prevalence of Presarcopenia in Asian Indian individuals with and without type 2 diabetes. Diabetes Technol Ther. 2013;15(9):768–75. https://doi.org/10.1089/dia.2013.0068.

    Article  CAS  PubMed  Google Scholar 

  11. Anoop S, Misra A, Bhatt SP, Gulati S, Mahajan H, Prabakaran G. High plasma glucagon levels correlate with waist-to-hip ratio, suprailiac skinfold thickness, and deep subcutaneous abdominal and intraperitoneal adipose tissue depots in nonobese Asian Indian males with type 2 diabetes in North India. J Diabetes Res. 2017;2017:1–9. https://doi.org/10.1155/2017/2376016.

    Article  CAS  Google Scholar 

  12. Buffa R, Saragat B, Succa V, Ruggiu R, Carboni L, Putzu PF, et al. Elderly subjects with type 2 diabetes show altered tissue electrical properties. Nutrition. 2013;29(1):132–7. https://doi.org/10.1016/j.nut.2012.05.007.

    Article  CAS  PubMed  Google Scholar 

  13. Chang Y, Guo X, Chen Y, Guo L, Li Z, Yu S, et al. A body shape index and body roundness index: two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health. 2015;15:794. https://doi.org/10.1186/s12889-015-2150-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mavros Y, Kay S, Anderberg KA, Baker MK, Wang Y, Zhao R, et al. Changes in insulin resistance and HbA1c are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: interim outcomes from the GREAT2DO trial. Diabetes Care. 2013;36(8):2372–9. https://doi.org/10.2337/dc12-2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park JS, Cho MH, Ahn CW, Kim KR, Huh KB. The association of insulin resistance and carotid atherosclerosis with thigh and calf circumference in patients with type 2 diabetes. Cardiovasc Diabetol. 2012;11:62. https://doi.org/10.1186/1475-2840-11-62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pramyothin P, Limpattanachart V, Dawilai S, Sarasak R, Sukaruttanawong C, Chaiyasoot K, et al. Fat-free mass, metabolically healthy obesity, and type 2 diabetes in severely obese asian adults. Endocr Pract. 2017;23(8):915–22. https://doi.org/10.4158/EP171792.OR.

    Article  PubMed  Google Scholar 

  17. Smits MM, Boyko EJ, Utzschneider KM, Leonetti DL, McNeely MJ, Suvag S, et al. Arm length is associated with type 2 diabetes mellitus in Japanese-Americans. Diabetologia. 2012;55(6):1679–84. https://doi.org/10.1007/s00125-012-2500-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Solanki JD, Makwana AH, Mehta HB, Gokhale PA, Shah CJ. Body composition in type 2 diabetes: change in quality and not just quantity that matters. Int J Prev Med. 2015;2015-December. https://doi.org/10.4103/2008-7802.172376.

  19. Tajiri Y, Kato T, Nakayama H, Yamada K. Reduction of skeletal muscle, especially in Lower Limbs, in Japanese type 2 diabetic patients with Insulin resistance and cardiovascular risk factors. Metab Syndr Relat Disord. 2010;8(2):137–42. https://doi.org/10.1089/met.2009.0043.

    Article  CAS  PubMed  Google Scholar 

  20. Wanderley Rocha DR, Jorge AR, Braulio VB, Arbex AK, Marcadenti A. Visceral adiposity measurements, metabolic and inflammatory profi le in obese patients with and without type 2 diabetes mellitus: a crosssectional analysis. Curr Diabetes Rev. 2017;13(1):11–8. https://doi.org/10.2174/1573399812666151015115924.

    Article  PubMed  Google Scholar 

  21. Wium C, Eggesbø HB, Ueland T, Michelsen AE, Torjesen PA, Aukrust P, et al. Adipose tissue distribution in relation to insulin sensitivity and inflammation in Pakistani and Norwegian subjects with type 2 diabetes. Scand J Clin Lab Invest. 2014;74(8):700–7. https://doi.org/10.3109/00365513.2014.953571.

    Article  CAS  PubMed  Google Scholar 

  22. Alvim RDO, Mourao Jr CA, De Oliveira CM, Krieger JE, Mill JG, Pereira AC. Body mass index, waist circumference, body adiposity index, and risk for type 2 diabetes in two populations in Brazil: General and Amerindian. PLoS One. 2014;9(6). https://doi.org/10.1371/journal.pone.0100223.

  23. Bianco A, Pomara F, Raccuglia M, Bellafiore M, Battaglia G, Filingeri D, et al. The relationship between type 2 diabetes family history, body composition and blood basal glycemia in sedentary people. Acta Diabetol. 2014;51(1):79–84. https://doi.org/10.1007/s00592-013-0502-x.

    Article  CAS  PubMed  Google Scholar 

  24. Biggs ML, Mukamal KJ, Luchsinger JA, Ix JH, Carnethon MR, Newman AB, et al. Association between adiposity in midlife and older age and risk of diabetes in older adults. JAMA J Am Med Assoc. 2010;303(24):2504–12. https://doi.org/10.1001/jama.2010.843.

    Article  CAS  Google Scholar 

  25. Jowitt LM, Lu LW, Rush EC. Migrant Asian Indians in New Zealand; prediction of metabolic syndrome using body weights and measures. Asia Pac J Clin Nutr. 2014;23(3):385–93. https://doi.org/10.6133/apjcn.2014.23.3.06.

    Article  CAS  PubMed  Google Scholar 

  26. Kim CH, Kim HK, Kim EH, Bae SJ, Park JY. Association between changes in body composition and risk of developing type 2 diabetes in Koreans. Diabet Med. 2014;31(11):1393–8. https://doi.org/10.1111/dme.12527.

    Article  PubMed  Google Scholar 

  27. Kwon SS, Lee SG, Lee YH, Lim JB, Kim JH. Homeostasis model assessment of insulin resistance in a general adult population in Korea: additive association of sarcopenia and obesity with insulin resistance. Clin Endocrinol. 2017;86(1):44–51. https://doi.org/10.1111/cen.13233.

    Article  CAS  Google Scholar 

  28. Lesser IA, Gasevic D, Lear SA. The effect of body fat distribution on ethnic differences in cardiometabolic risk factors of Chinese and Europeans. Appl Physiol Nutr Metab. 2013;38(7):701–6. https://doi.org/10.1139/apnm-2012-0125.

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Sun Q, Sun L, Zong G, Lu L, Liu G, et al. The development and validation of new equations for estimating body fat percentage among Chinese men and women. Br J Nutr. 2015;113(9):1365–72. https://doi.org/10.1017/S0007114515000616.

    Article  CAS  PubMed  Google Scholar 

  30. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898–903. https://doi.org/10.1210/jc.2011-0435.

    Article  CAS  PubMed  Google Scholar 

  31. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS One. 2012;7(7):e39504. https://doi.org/10.1371/journal.pone.0039504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21(11):2264–71.

    Article  PubMed  Google Scholar 

  33. Goodpaster BH, Krishnaswami S, Resnick H, Kelley DE, Haggerty C, Harris TB, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care. 2003;26(2):372–9.

    Article  PubMed  Google Scholar 

  34. Janiszewski PM, Janssen I, Ross R. Does waist circumference predict diabetes and cardiovascular disease beyond commonly evaluated cardiometabolic risk factors? Diabetes Care. 2007;30(12):3105–9.

    Article  CAS  PubMed  Google Scholar 

  35. Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America's health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Am J Clin Nutr. 2007;85(5):1197–202.

    Article  CAS  PubMed  Google Scholar 

  36. Goss AM, Darnell BE, Brown MA, Oster RA, Gower BA. Longitudinal associations of the endocrine environment on fat partitioning in postmenopausal women. Obesity. 2012;20(5):939–44. https://doi.org/10.1038/oby.2011.362.

    Article  CAS  PubMed  Google Scholar 

  37. Toth M, Tchernof A, Sites C, Poehlman E. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes. 2000;24(2):226–31.

    Article  CAS  Google Scholar 

  38. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671–E8. https://doi.org/10.1152/ajpendo.00492.2002.

    Article  CAS  PubMed  Google Scholar 

  39. Johnston LW, Harris SB, Retnakaran R, Gerstein HC, Zinman B, Hamilton J, et al. Short leg length, a marker of early childhood deprivation, is associated with metabolic disorders underlying type 2 diabetes: the PROMISE cohort study. Diabetes Care. 2013;36(11):3599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J-K, Wu C-K, Lin L-Y, Cheng C-L, Lin J-W, Hwang J-J, et al. Insulin resistance in the middle-aged women with “Tigerish Back and Bearish Waist”. Diabetes Res Clin Pract. 2010;90(3):e85–e7.

    Article  PubMed  Google Scholar 

  41. Snijder M, Visser M, Dekker J, Goodpaster BH, Harris TB, Kritchevsky SB, et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48(2):301–8.

    Article  CAS  PubMed  Google Scholar 

  42. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/circulationaha.109.192644.

    Article  CAS  PubMed  Google Scholar 

  43. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5).

  44. Bosy-Westphal A, Müller M. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—there is need for a unified definition. Int J Obes. 2015;39(3):379–86.

    Article  CAS  Google Scholar 

  45. Kim KS, Park KS, Kim MJ, Kim SK, Cho YW, Park SW. Type 2 diabetes is associated with low muscle mass in older adults. Geriatr Gerontol Int. 2014;14:115–21.

    Article  PubMed  Google Scholar 

  46. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8.

    Article  CAS  PubMed  Google Scholar 

  47. Lund A, Bagger JI, Christensen M, Knop FK, Vilsbøll T. Glucagon and type 2 diabetes: the return of the alpha cell. Curr Diab Rep. 2014;14(12):555.

    Article  PubMed  Google Scholar 

  48. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity. 2011;19(5):1083–9.

    Article  PubMed  Google Scholar 

  49. Herman WH, Smith PJ, Thompson TJ, Engelgau MM, Aubert RE. A new and simple questionnaire to Identify people at increased risk for undiagnosed diabetes. Diabetes Care. 1995;18(3):382–7. https://doi.org/10.2337/diacare.18.3.382.

    Article  CAS  PubMed  Google Scholar 

  50. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24(3):460–4. https://doi.org/10.2337/diacare.24.3.460.

    Article  CAS  PubMed  Google Scholar 

  51. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. https://doi.org/10.1007/bf00280883.

    Article  CAS  PubMed  Google Scholar 

  52. Cornelis MC, Zaitlen N, Hu FB, Kraft P, Price AL. Genetic and environmental components of family history in type 2 diabetes. Hum Genet. 2015;134(2):259–67. https://doi.org/10.1007/s00439-014-1519-0.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma AM, Chetty VT. Obesity, hypertension and insulin resistance. Acta Diabetol. 2005;42(Suppl 1):S3–8. https://doi.org/10.1007/s00592-005-0175-1.

    Article  CAS  PubMed  Google Scholar 

  54. Heymsfield S, Lohman T, Wang ZM, Going S. Human body composition. vol v. 918. Human Kinetics; 2005.

  55. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80. https://doi.org/10.1111/j.1464-5491.2006.01858.x.

    Article  CAS  PubMed  Google Scholar 

  56. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008;18(5):388–95. https://doi.org/10.1016/j.numecd.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  57. Miyazaki Y, DeFronzo RA. Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type. Cardiovasc Diabetol. 2009;8(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lim U, Ernst T, Buchthal S, Latch M, Albright CL, Wilkens LR, et al. Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr Diabetes. 2011;1(5):e6–e.

    Article  Google Scholar 

  59. Nyamdorj R, Qiao Q, Lam TH, Tuomilehto J, Ho SY, Pitkäniemi J, et al. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring). 2008;16(7):1622–35. https://doi.org/10.1038/oby.2008.73.

    Article  CAS  Google Scholar 

  60. Centers for Disease Control and Prevention: diabetes and Asian Americans. https://www.cdc.gov/diabetes/library/spotlights/diabetes-asian-americans.html (2019). Accessed May 10, 2020 2020.

  61. Beechy L, Galpern J, Petrone A, Das SK. Assessment tools in obesity - psychological measures, diet, activity, and body composition. Physiol Behav. 2012;107(1):154–71. https://doi.org/10.1016/j.physbeh.2012.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andreoli A, Garaci F, Cafarelli FP, Guglielmi G. Body composition in clinical practice. Eur J Radiol. 2016;85(8):1461–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

NMS was supported by doctoral study funding through the University of Alabama Birmingham Graduate School and University of Alabama Birmingham School of Nursing Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

NS, study design; NS, data collection; NS, SM analysis; NS, SM manuscript preparation.

Corresponding author

Correspondence to Nadia Markie Sneed.

Ethics declarations

Conflict of Interest

Nadia Markie Sneed and Shannon A. Morrison each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneed, N.M., Morrison, S.A. Body Composition Methods in Adults with Type 2 Diabetes or at Risk for T2D: a Clinical Review. Curr Diab Rep 21, 14 (2021). https://doi.org/10.1007/s11892-021-01381-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01381-9

Keywords

Navigation