Skip to main content

Advertisement

Log in

Dynamical Systems for Solving Variational Inequalities

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose dynamical systems for solving variational inequalities whose mapping is paramonotone, strongly pseudomonotone or pseudomonotone and Lipschitz continuous, respectively. Solutions of these dynamical system are shown to converge to a desired solution of the variational inequalities. When the mapping is strongly pseudomonotone but is not necessarily Lipschitz continuous, the convergence rate of the new algorithm is established. This approach is novel and the new algorithms can be considered continuous versions of the existing ones for variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anh PK, Hai TN. Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer Algor 2017;76:67–91.

    Article  MathSciNet  Google Scholar 

  2. Anh PK, Vinh NT. Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators. Numer Algor 2019;81:983–1001.

    Article  MathSciNet  Google Scholar 

  3. Anh PN, Hai TN, Tuan PM. On ergodic algorithms for equilibrium problems. J Global Optim 2016;64:179–195.

    Article  MathSciNet  Google Scholar 

  4. Antipin AS. Gradient approach of computing fixed points of equilibrium problems. J Glob Optim 2002;24:285–309.

    Article  MathSciNet  Google Scholar 

  5. Bao TQ, Khanh PQ. A projection-type algorithm for pseudomonotone nonlipschitzian multi-valued variational inequalities. Nonconvex Optim Appl 2005;77:113–129.

    Article  Google Scholar 

  6. Bauschke HH, Combettes PL. Convex analysis and monotone operator theory in hilbert spaces. New York: Springer; 2011.

    Book  Google Scholar 

  7. Bello Cruz JY, Iusem AN. An explicit algorithm for monotone variational inequalities. Optimization 2012;61:855–871.

    Article  MathSciNet  Google Scholar 

  8. Bello Cruz JY, Iusem AN. Convergence of direct methods for paramonotone variational inequalities. Comput Optim Appl 2010;46:247–263.

    Article  MathSciNet  Google Scholar 

  9. Bigi G, Castellani M, Pappalardo M, Passacantando M. Existence and solution methods for equilibria. Eur J Oper Res 2013;227:1–11.

    Article  MathSciNet  Google Scholar 

  10. Blum E, Oettli W. From optimitazion and variational inequalities to equilibrium problems. Math Stud 1994;63:123–145.

    MATH  Google Scholar 

  11. Cavazzuti E, Pappalardo M, Passacantando M. Nash equilibria, variational inequalities, and dynamical systems. J Optim Theory Appl 2002;114:491–506.

    Article  MathSciNet  Google Scholar 

  12. Bello Cruz JY, Millán RD. A direct splitting method for nonsmooth variational inequalities. J Optim Theory Appl 2014;161:729–737.

    Article  MathSciNet  Google Scholar 

  13. Facchinei F, Pang J-S. Finite-dimensional variational inequalities and complementarity problems. New York: Springer; 2003.

    MATH  Google Scholar 

  14. Ha NTT, Strodiot JJ, Vuong PT. On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities. Opt Lett 2018;12:1625–38.

    Article  MathSciNet  Google Scholar 

  15. Hai TN, Vinh NT. Two new splitting algorithms for equilibrium problems. Rev R Acad Cienc Exactas Fís Nat Ser A Math RACSAM 2017;111:1051–69.

    Article  MathSciNet  Google Scholar 

  16. Hai TN. Two modified extragradient algorithms for solving variational inequalities. J Global Optim 2020;78:91–106.

    Article  MathSciNet  Google Scholar 

  17. Hai TN. On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity. Opt Lett 2020;14:1177–91.

    Article  MathSciNet  Google Scholar 

  18. Hu X, Wang J. Global stability of a recurrent neural network for solving pseudomonotone variational inequalities. Proceedings of the IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, May 21-24; 2006. p. 755–758.

  19. Iiduka H. Fixed point optimization algorithm and its application to power control in CDMA data networks. Math Program 2012;133:227–242.

    Article  MathSciNet  Google Scholar 

  20. Khanh PD, Vuong PT. Modified projection method for strongly pseudomonotone variational inequalities. J Global Optim 2014;58:341–350.

    Article  MathSciNet  Google Scholar 

  21. Kien BT, Yao J-C, Yen ND. On the solution existence of pseudomonotone variational inequalities. J Glob Optim 2008;41:135–145.

    Article  MathSciNet  Google Scholar 

  22. Kim JK, Anh PN, Hai TN. The Bruck’s ergodic iteration method for the Ky Fan inequality over the fixed point set. Int J Comput Math 2017;94:2466–80.

    Article  MathSciNet  Google Scholar 

  23. Kinderlehrer D, Stampacchia G. An introduction to variational inequalities and their applications. New York: Academic Press; 1980.

    MATH  Google Scholar 

  24. Konnov IV. Combined relaxation methods for variational inequalities. Berlin: Springer; 2000.

    MATH  Google Scholar 

  25. Korpelevich GM. The extragradient method for finding saddle points and other problems. Ekon Mat Metody 1976;12:747–756.

    MathSciNet  MATH  Google Scholar 

  26. Malitsky Y. Projected reflected gradient methods for monotone variational inequalities. SIAM J Optim 2015;25:502–520.

    Article  MathSciNet  Google Scholar 

  27. Nagurney A, Zhang D. Projected dynamical systemsand variational inequalities with applications. Dordrecht: Kluwer Academic; 1996.

    Book  Google Scholar 

  28. Pappalardo M, Passacantando M. Stability for equilibrium problems: from variational inequalities to dynamical systems. J Optim Theory Appl 2002; 113:567–582.

    Article  MathSciNet  Google Scholar 

  29. Quoc TD, Muu LD, Nguyen VH. Extragradient algorithms extended to equilibrium problems. Optimization 2008;57:749–776.

    Article  MathSciNet  Google Scholar 

  30. Rockafellar RT. Convex analysis. Princeton, New Jersey: Princeton University Press; 1970.

    Book  Google Scholar 

  31. Santos PSM, Scheimberg S. An inexact subgradient algorithm for equilibrium problems. Comput Appl Math 2011;30(1):91–107.

    MathSciNet  MATH  Google Scholar 

  32. Solodov MV, Svaiter BF. A new projection method for monotone variational inequality problems. SIAM J Control Optim 1999;37:765–776.

    Article  MathSciNet  Google Scholar 

  33. Thuy LQ, Hai TN. A projected subgradient algorithm for bilevel equilibrium problems and applications. J Optim Theory Appl 2017;175:411–431.

    Article  MathSciNet  Google Scholar 

  34. Vuong PT, Strodiot JJ. A dynamical system for strongly pseudo-monotone equilibrium problems. J Optim Theory Appl 2020;185:767–784.

    Article  MathSciNet  Google Scholar 

  35. Vuong PT. 2019. The global exponential stability of a dynamical system for solving variational inequalities. https://doi.org/10.1007/s11067-019-09457-6.

  36. Wang YJ, Xiu NH, Zhang JZ. Modified extragradient method for variational inequalities and verification of solution existence. J Optim Theory Appl 2003;119:167–183.

    Article  MathSciNet  Google Scholar 

  37. Yang J, Liu H. Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer Algor 2019;80:741–752.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their remarks which helped to significantly improve the paper.

Funding

This work is supported by Vietnam Ministry of Education and Training under grant number B2020-BKA-21-CTTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Ngoc Hai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, T.N. Dynamical Systems for Solving Variational Inequalities. J Dyn Control Syst 28, 681–696 (2022). https://doi.org/10.1007/s10883-021-09531-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-021-09531-8

Keywords

Mathematics Subject Classification 2010

Navigation