Skip to main content

Advertisement

Log in

Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The adsorption of molecular hydrogen on the monolayer graphene sheet under varied temperature and pressure was studied using molecular dynamics simulations (MDS). A novel method for obtaining potential energy distributions (PEDs) of systems was developed to estimate the gravimetric density or weight percentage of hydrogen. The Tersoff and Lennard–Jones (LJ) potentials were used to describe interatomic interactions of carbon–carbon atoms in the graphene sheet and the interactions between graphene and hydrogen molecules, respectively. The results estimated by the use of novel method in conjunction with MDS developed herein were found to be in excellent agreement with the existing experimental results. The effect of pressure and temperature was studied on the adsorption energy and gravimetric density for hydrogen storage. In particular, we focused on hydrogen adsorption on graphene layer considering the respective low temperature and pressure in the range of 77–300 K and 1–10 MPa for gas storage purpose which indicate the combination of optimal extreme conditions. Adsorption isotherms were plotted at 77 K, 100 K, 200 K, and 300 K temperatures and up to 10 MPa pressure. The simulation results indicate that the reduction in temperature and increase in pressure favor the gravimetric density and adsorption energies. At 77 K and 10 MPa, the maximum gravimetric density of 6.71% was observed. Adsorption isotherms were also analyzed using Langmuir, Freundlich, Sips, Toth, and Fritz–Schlunder equations. Error analysis was performed for the determination of isotherm parameters using the sum of the squares of errors (SSE), the hybrid fractional error function (HYBRID), the average relative error (ARE), the Marquardt’s percent standard deviation (MPSD), and the sum of the absolute errors (SAE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar KV, Salih A, Lu L, Müller EA, Rodríguez-Reinoso F (2012) Molecular simulation of hydrogen physisorption and chemisorption in nanoporous carbon structures. Adsorpt Sci Technol 29(8):799–817. https://doi.org/10.1260/0263-6174.29.8.799

    Article  Google Scholar 

  2. Stalker MR, Grant J, Yong CW, Ohene-Yeboah LA, Mays TJ, Parker SC (2019) Molecular simulation of hydrogen storage and transport in cellulose. Mol Simul. https://doi.org/10.1080/08927022.2019.1593975

    Article  Google Scholar 

  3. Chang EC (2017) Robust and optimal technical method with application to hydrogen fuel cell systems. Int J Hydrog Energy 42(40):25326–25333. https://doi.org/10.1016/j.ijhydene.2017.08.119

    Article  CAS  Google Scholar 

  4. Barrett S (2005) Progress in the European hydrogen and fuel cell technology platform. Fuel Cells Bull 2005(4):12–17. https://doi.org/10.1016/S1464-2859(05)00591-2

    Article  Google Scholar 

  5. Houf WG, Evans GH, Ekoto IW, Merilo EG, Groethe MA (2013) Hydrogen fuel-cell forklift vehicle releases in enclosed spaces. Int J Hydrog Energy 38(19):8179–8189. https://doi.org/10.1016/j.ijhydene.2012.05.115

    Article  CAS  Google Scholar 

  6. Rivard E, Trudeau M, Zaghib K (2019) Hydrogen storage for mobility: a review. Materials. https://doi.org/10.3390/ma12121973

    Article  Google Scholar 

  7. Moradi R, Groth KM (2019) Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrog Energy 44(23):12254–12269. https://doi.org/10.1016/j.ijhydene.2019.03.041

    Article  CAS  Google Scholar 

  8. Barthélémy H (2012) Hydrogen storage: industrial prospectives. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2012.04.121

    Article  Google Scholar 

  9. Barthelemy H, Weber M, Barbier F (2017) Hydrogen storage: recent improvements and industrial perspectives. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2016.03.178

    Article  Google Scholar 

  10. Weinberger B, Lamari FD (2009) High pressure cryo-storage of hydrogen by adsorption at 77 K and up to 50 MPa. Int J Hydrog Energy 34(7):3058–3064. https://doi.org/10.1016/j.ijhydene.2009.01.093

    Article  CAS  Google Scholar 

  11. Barghi SH, Tsotsis TT, Sahimi M (2014) Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. Int J Hydrog Energy 39(3):1390–1397. https://doi.org/10.1016/j.ijhydene.2013.10.163

    Article  CAS  Google Scholar 

  12. Bastos-Neto M, Patzschke C, Lange M, Möllmer J, Möller A, Fichtner S, Schrage C, Lässig D, Lincke J, Staudt R et al (2012) Assessment of hydrogen storage by physisorption in porous materials. Energy Environ Sci 5(8):8294–8303. https://doi.org/10.1039/c2ee22037g

    Article  CAS  Google Scholar 

  13. Hydrogen Storage Department of Energy (2020). https://www.energy.gov/eere/fuelcells/hydrogen-storage. Accessed 15 Jul 2020

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  15. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  16. Alian AR, Meguid SA, Kundalwal SI (2017) Unraveling the influence of grain boundaries on the mechanical properties of polycrystalline carbon nanotubes. Carbon 125:180–188. https://doi.org/10.1016/j.carbon.2017.09.056

    Article  CAS  Google Scholar 

  17. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  18. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  19. Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G (2005) Graphene nanostructures as tunable storage media for molecular hydrogen. Proc Natl Acad Sci USA 102(30):10439–10444. https://doi.org/10.1073/pnas.0501030102

    Article  CAS  Google Scholar 

  20. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  21. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene / polymer nanocomposites. Carbon 98:313–333. https://doi.org/10.1016/j.carbon.2015.11.018

    Article  CAS  Google Scholar 

  22. Kundalwal SI, Meguid SA, Weng GJ (2017) Strain gradient polarization in graphene. Carbon 117:462–472. https://doi.org/10.1016/J.CARBON.2017.03.013

    Article  CAS  Google Scholar 

  23. Klechikov AG, Mercier G, Merino P, Blanco S, Merino C, Talyzin AV (2015) Hydrogen storage in bulk graphene-related materials. Microporous Mesoporous Mater 210:46–51. https://doi.org/10.1016/j.micromeso.2015.02.017

    Article  CAS  Google Scholar 

  24. Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM (2009) Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrog Energy 34(5):2329–2332. https://doi.org/10.1016/j.ijhydene.2008.12.079

    Article  CAS  Google Scholar 

  25. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2020) Graphene quantum dots synthesis and energy application: a review. Carbon Lett. https://doi.org/10.1007/s42823-020-00154-w

    Article  Google Scholar 

  26. Shiraz HG, Tavakoli O (2017) Investigation of graphene-based systems for hydrogen storage. Renew Sustain Energy Rev 74:104–109. https://doi.org/10.1016/j.rser.2017.02.052

    Article  CAS  Google Scholar 

  27. Pyle DS, Gray EMA, Webb CJ (2016) Hydrogen storage in carbon nanostructures via spillover. Int J Hydrog Energy 41(42):19098–19113. https://doi.org/10.1016/j.ijhydene.2016.08.061

    Article  CAS  Google Scholar 

  28. Jain V, Kandasubramanian B (2020) Functionalized graphene materials for hydrogen storage. J Mater Sci 55(5):1865–1903. https://doi.org/10.1007/s10853-019-04150-y

    Article  CAS  Google Scholar 

  29. Shevlin SA, Guo ZX (2007) Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes. Phys Rev B. https://doi.org/10.1103/PhysRevB.76.024104

    Article  Google Scholar 

  30. Mohan M, Sharma VK, Kumar EA, Gayathri V (2019) Hydrogen storage in carbon materials: a review. Energy Storage 1(2):e35. https://doi.org/10.1002/est2.35

    Article  CAS  Google Scholar 

  31. Nagar R, Vinayan BP, Samantaray SS, Ramaprabhu S (2017) Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J Mater Chem A 5(44):22897–22912. https://doi.org/10.1039/c7ta05068b

    Article  CAS  Google Scholar 

  32. Wang Q, Johnson JK (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem B 103(2):279–281. https://doi.org/10.1021/jp9839100

    Article  Google Scholar 

  33. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B. https://doi.org/10.1021/jp980114l

    Article  Google Scholar 

  34. Jhi SH (2007) A theoretical study of activated nanostructured materials for hydrogen storage. Catal Today 120:383–388. https://doi.org/10.1016/j.cattod.2006.09.025

    Article  CAS  Google Scholar 

  35. Figueroa-Torres MZ, Robau-Sánchez A, la Torre-Sáenz L, Aguilae-Elguezabal A (2007) Hydrogen adsorption by nanostructured carbons synthesized by chemical activation. Microporous Mesoporous Mater 98(1–3):89–93. https://doi.org/10.1016/j.micromeso.2006.08.022

    Article  CAS  Google Scholar 

  36. López-Corral I, Germán E, Volpe MA, Brizuela GP, Juan A (2010) Tight-binding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes. Int J Hydrog Energy 35(6):2377–2384. https://doi.org/10.1016/j.ijhydene.2009.12.155

    Article  CAS  Google Scholar 

  37. Huang CC, Pu NW, Wang CA, Huang JC, Sung Y, Der GM (2011) Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique. Sep Purif Technol 82(1):210–215. https://doi.org/10.1016/j.seppur.2011.09.020

    Article  CAS  Google Scholar 

  38. Petrushenko IK, Petrushenko KB (2018) Hydrogen adsorption on graphene, hexagonal boron nitride, and graphene-like boron nitride-carbon heterostructures: a comparative theoretical study. Int J Hydrog Energy 43(2):801–808. https://doi.org/10.1016/j.ijhydene.2017.11.088

    Article  CAS  Google Scholar 

  39. Feng Y, Wang J, Liu Y, Zheng Q (2019) Adsorption equilibrium of hydrogen adsorption on activated carbon, multi-walled carbon nanotubes and graphene sheets. Cryogenics 101:36–42. https://doi.org/10.1016/j.cryogenics.2019.05.009

    Article  CAS  Google Scholar 

  40. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  41. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  42. Tersoff J (1989) Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568. https://doi.org/10.1103/PhysRevB.39.5566

    Article  CAS  Google Scholar 

  43. Javvaji B, Budarapu PR, Sutrakar VK, Mahapatra DR, Paggi M, Zi G, Rabczuk T (2016) Mechanical properties of Graphene: Molecular dynamics simulations correlated to continuum based scaling laws. Comput Mater Sci 125:319–327. https://doi.org/10.1016/j.commatsci.2016.08.016

    Article  CAS  Google Scholar 

  44. Thomas S, Ajith KM (2014) Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet. Proced Mater Sci 5:489–498. https://doi.org/10.1016/j.mspro.2014.07.292

    Article  CAS  Google Scholar 

  45. Volokh KY (2012) On the strength of graphene. J Appl Mech Trans ASME. https://doi.org/10.1115/1.4005582

    Article  Google Scholar 

  46. Bu H, Chen Y, Zou M, Yi H, Bi K, Ni Z (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett Sect A 373(37):3359–3362. https://doi.org/10.1016/j.physleta.2009.07.048

    Article  CAS  Google Scholar 

  47. Cracknell RF (2001) Molecular simulation of hydrogen adsorption in graphitic nanofibres. Phys Chem Chem Phys 3(11):2091–2097. https://doi.org/10.1039/b100144m

    Article  CAS  Google Scholar 

  48. Kundalwal SI, Choyal VK, Luhadiya N, Choyal V (2020) Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology. https://doi.org/10.1088/1361-6528/ab9d43

    Article  Google Scholar 

  49. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  50. Freundlich H (1907) Über die adsorption in Lösungen. Z Phys Chem 57U(1):385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  51. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16(5):490–495. https://doi.org/10.1063/1.1746922

    Article  CAS  Google Scholar 

  52. Tóth J (2000) Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature. J Colloid Interface Sci 225(2):378–383. https://doi.org/10.1006/jcis.2000.6723

    Article  Google Scholar 

  53. Fritz W, Schluender EU (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci 29(5):1279–1282. https://doi.org/10.1016/0009-2509(74)80128-4

    Article  CAS  Google Scholar 

  54. Porter JF, McKay G, Choy KH (1999) The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem Eng Sci 54(24):5863–5885. https://doi.org/10.1016/S0009-2509(99)00178-5

    Article  CAS  Google Scholar 

  55. Winter C-J (2009) Hydrogen energy d Abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrog Energy 34:S1–S52. https://doi.org/10.1016/j.ijhydene.2009.05.063

    Article  CAS  Google Scholar 

  56. Dimitrakaki GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8(10):3166–3170. https://doi.org/10.1021/nl801417w

    Article  CAS  Google Scholar 

  57. Lamari FD, Levesque D (2011) Hydrogen adsorption on functionalized graphene. Carbon 49(15):5196–5200. https://doi.org/10.1016/j.carbon.2011.07.036

    Article  CAS  Google Scholar 

  58. Tien C (1994) Adsorption calculations and modelling. Butterworth-Heinemann Boston. https://doi.org/10.1016/c2009-0-26911-x

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India. Second and third authors acknowledge the generous support of the DST Grant (DST/TMD/HFC/2K18/88).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luhadiya, N., Kundalwal, S.I. & Sahu, S.K. Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method. Carbon Lett. 31, 655–666 (2021). https://doi.org/10.1007/s42823-021-00236-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00236-3

Keywords

Navigation