Skip to main content
Log in

Efficient Production of Various Minor Ginsenosides from PPD- and PPT-type Major Ginsenosides Using a Single Recombinant BglFc Isolated from Flavobacterium chilense

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Background

Rare ginsenosides (F2, Rg3, Gyp-XVII, and C-K) are pharmaceutically active components of Panax ginseng, which are derived from the conversion of major ginsenosides through various transformation methods. To date, most studies have failed to identify a competent bacterial strain and recombinant enzyme for converting protopanaxadiol (PPD)- and protopanaxatriol (PPT)-type ginsenosides to target minor ginsenosides.

Method

Our study identified and employed nine sets of clones from different glycoside hydrolase bacterial strains for major ginsenoside bioconversion. Among these nine clones, only BglFc was selected based on its strong biotransformation ability and capacity to generate complete minor ginsenosides. bglFc was cloned and expressed in Escherichia coli using the pGEX-4T-1 vector system, and the recombinant enzyme was used for efficiently producing minor ginsenosides

Results

Recombinant BglFc is 2,394 bp and 798 amino acid residues long, with a predicted molecular mass of 78.8 kDa. BglFc belongs to the glycoside hydrolase family 3, and demonstrates a promising ability to convert major ginsenosides into minor ones. The Km and Vmax values of pNPG were 0.81 ± 0.06 and 4.0 ± 0.2 mM·min−1·mg−1 of protein, respectively. Under optimal conditions (37°C, pH 7.0), the ginsenoside transformation pathways for BglFc were as follows: Rb1→Rd→Rg3(S)→Rh2(S); GypXVII →GypLXXV→C-K; GypLXXV→C-K; F2→C-K; Rb2 →C-O→C-Y; Rb3→C-Mx1→C-Mx; Rc→C-Mcl→C-Mc; Re→Rg2(S); and Rgl→Rhl(S), respectively.

Conclusion

These results suggest that recombinant BglFc demonstrates a strong transformation activity for both PPD- and PPT-type major ginsenosides. Therefore, we conclude that BglFc can be used for gram unit production of various minor ginsenosides.

Significance and Impact of Study

Previously, researchers have used a combination of enzymes for the production of minor ginsenosides. However, in this study, we found a favorable enzyme that can be used alone for the production of a different type of minor ginsenoside using the proposed conversion pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sengupta, S., S. A. Toh, L. A. Sellers, J. N. Skepper, P. Koolwijk, H. W. Leung, H. W. Yeung, R. N. S. Wong, R. Sasisekharan, and T. P. D. Fan (2004) Modulating angiogenesis: the yin and the yang in ginseng. Circulation. 110: 1219–1225.

    Article  CAS  PubMed  Google Scholar 

  2. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065–1071.

    Article  PubMed  Google Scholar 

  3. Siddiqi, M. Z., M. H. Siddiqi, Y. J. Kim, Y. Jin, M. A. Huq, and D. C. Yang (2015) Effect of fermented red ginseng extract enriched in ginsenoside Rg3 on the differentiation and mineralization of preosteoblastic MC3T3-E1 cells. J. Med. Food. 18: 542–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bae, E. A., M. J. Han, E. J. Kim, and D. H. Kim (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 27: 61–67.

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqi, M. Z., C. H. Cui, S. K. Park, N. S. Han, S. C. Kim, and W. T. Im (2017) Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix. PLoS One. 12: e0176098.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yun, T. K., Y. S. Lee, Y. H. Lee, and H. Y. Yun (2001) Cancer chemopreventive compounds of red ginseng produced from Panax ginseng C.A. Meyer. J. Ginseng Res. 25: 107–111.

    CAS  Google Scholar 

  7. Siddiqi, M. Z., S. M. Shafi, and W. T. Im (2017) Complete genome sequencing of Arachidicoccus ginsenosidimutans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv. 7: 46745–46759.

    Article  CAS  Google Scholar 

  8. Siddiqi, M. Z., M. S. Hashmi, J. M. Oh, S. Chun, and W. T. Im (2019) Identification of novel glycoside hydrolases via whole genome sequencing of Niabella ginsenosidivorans for production of various minor ginsenosides. 3 Biotech. 9: 258.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Siddiqi, M. Z., S. Srinivasan, H. Y. Park, and W. T. Im (2020) Exploration and characterization of novel glycoside hydrolases from the whole genome of Lactobacillus ginsenosidimutans and enriched production of minor ginsenoside Rg3 (S) by a recombinant enzymatic process. Biomolecules. 10: 288.

    Article  CAS  PubMed Central  Google Scholar 

  10. Lee, W., O. Yuseok, C. Lee, S. Y. Jeong, J. H. Lee, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive activities of KC1-3 on HMGB1-mediated septic responses. Biochem. Pharmacol. 163: 260–268.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, J. E., W. Lee, S. Yang, S. H. Cho, M. C. Baek, G. Y. Song, and J. S. Bae (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, W., S. K. Ku, J. E. Kim, G. E. Choi, G. Y. Song, and J. S. Bae (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol. Bioprocess Eng. 24: 445–453.

    Article  CAS  Google Scholar 

  13. Lee, W., S. K. Ku, J. E. Kim, S. H. Cho, G. Y. Song, and J. S. Bae (2019) Inhibitory effects of black ginseng on particulate matter-induced pulmonary injury. Am. J. Chin. Med. 47: 1237–1251.

    Article  CAS  PubMed  Google Scholar 

  14. Shin, J. Y., J. M. Lee, H. S. Shin, S. Y. Park, J. E. Yang, S. K. Cho, and T. H. Yi (2012) Anti-cancer effect of ginsenoside F2 against glioblastoma multiforme in xenograft model in SD rats. J. Ginseng Res. 36: 86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, H. D., J. T. Kim, S. H. Kim, and S. H. Chung (2012) Ginseng and diabetes: the evidences from in vitro, animal and human studies. J. Ginseng Res. 36: 27–39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quan, L. H., J. Y. Piao, J. W. Min, H. B. Kim, S. R. Kim, D. U. Yang, and D. C. Yang (2011) Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J. Ginseng Res. 35: 344–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin, K. C., H. Y. Choi, M. J. Seo, and D. K. Oh (2015) Compound K production from red ginseng extract by β-glycosidase from Sulfolobus solfataricus supplemented with α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One. 10: e0145876.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  20. Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  21. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783–791.

    Article  PubMed  Google Scholar 

  23. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Harvey, A. J., M. Hrmova, R. De Gori, J. N. Varghese, and G. B. Fincher (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteinss. 41: 257–269.

    Article  CAS  Google Scholar 

  25. Cui, C. H., J. K. Kim, S. C. Kim, and W. T. Im (2013) Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl. Microbiol. Biotechnol 97: 649–659.

    Article  CAS  PubMed  Google Scholar 

  26. Du, J., C. H. Cui, S. C. Park, J. K. Kim, H. S. Yu, F. X. Jin, C. Sun, S. C. Kim, and W. T. Im (2014) Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S). PLoS One. 9: e96914.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Quan, L. H., J. W. Min, D. U. Yang, Y. J. Kim, and D. C. Yang (2012) Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum. Appl. Microbiol. Biotechnol. 94: 377–384.

    Article  CAS  PubMed  Google Scholar 

  28. Quan, L. H., J. W. Min, Y. Jin, C. Wang, Y. J. Kim, and D. C. Yang (2012) Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum. J. Agric. Food Chem. 60: 3776–3781.

    Article  CAS  PubMed  Google Scholar 

  29. Hong, H., C. H. Cui, J. K. Kim, F. X. Jin, S. C. Kim, and W. T. Im (2012) Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh (2009) Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73: 316–321.

    Article  CAS  PubMed  Google Scholar 

  31. Yoo, M. H., S. J. Yeom, C. S. Park, K. W. Lee, and D. K. Oh (2011) Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Appl. Microbiol. Biotechnol. 89: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  32. Kämpfer, P., N. Lodders, K. Martin, and R. Avendaño-Herrera (2012) Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int. J. Syst. Evol. Microbiol. 62: 1402–1408.

    Article  PubMed  Google Scholar 

  33. An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, F. Jin, H. Yu, Y. W. Chin, H. K. Lee, W. T. Im, and S. G. Kim (2010) Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827–5836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, L., Q. M. Liu, B. H. Sung, D. S. An, H. G. Lee, S. G. Kim, S. C. Kim, S. T. Lee, and W. T. Im (2012) Bioconversion of ginsenosides Rb1, Rb2, Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J. Biotechnol. 156: 125–133.

    Article  Google Scholar 

Download references

Acknowldgements

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202018103), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B 07045774), and by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Project No. 2019H1D3A1A02070958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Additional information

Conflicts of Interest

The authors declare that there is no conflict of interest.

Ethical Statement

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqi, M.Z., Medjebouri, S., Liu, Q. et al. Efficient Production of Various Minor Ginsenosides from PPD- and PPT-type Major Ginsenosides Using a Single Recombinant BglFc Isolated from Flavobacterium chilense. Biotechnol Bioproc E 26, 232–246 (2021). https://doi.org/10.1007/s12257-020-0099-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0099-1

Keywords

Navigation