Skip to main content
Log in

Steady-state similarity velocity profiles for dense granular flow down inclined chutes

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this paper we exploit the fact that dense granular flow down an inclined chute exhibits a simple scaling property. This implies that the fundamental governing partial differential equation admits similarity profiles which are applicable to any general friction law \(\mu (I)\) of the material irrespective of the particular functional form under consideration, where \(\mu (I)\) is a function of the dimensionless parameter, called the inertial number I. We adopt a widely accepted constitutive model describing the material response that draws its original inspiration from the realms of classical visco-plasticity. The governing steady-state similarity solutions are however applicable for any friction law describing dense granular media. These steady-state solutions embody the key aspects of dense granular flow down an inclined chute that find wide usage in various industrial applications and will further aid in modelling natural geophysical phenomenon. We provide steady-state analytical solutions for some special cases and we emphasize the importance of similarity solutions as a benchmark standard for various numerical studies concerning the complex material behaviour of dense granular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muir Wood, D.: The magic of sands—the 20\(^{th}\) Bjerrum Lecture presented in Oslo, 25 November 2005. Can. Geotech. J. 44(11), 1329–1350 (2007)

    Article  Google Scholar 

  2. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)

    Article  ADS  Google Scholar 

  3. Fang, C., Wu, W.: On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: part II. Complete closure models and numerical simulations. Acta Geotechnica 9(5), 739–752 (2014b)

    Article  Google Scholar 

  4. Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107(18), 188301 (2011)

    Article  ADS  Google Scholar 

  5. Ness, C., Sun, J.: Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling. Phys. Rev. E 91(1), 012201 (2015)

    Article  ADS  Google Scholar 

  6. Lade, P.V., Kim, M.K.: Single hardening constitutive model for frictional materials II. Yield criterion and plastic work contours. Comput. Geotech. 6(1), 13–29 (1998)

    Article  Google Scholar 

  7. Chambon, R., Desrues, J., Hammad, W., Charlier, R.: CLOE, a new rate-type constitutive model for geomaterials theoretical basis and implementation. Int. J. Numer. Anal. Methods Geomech. 18(4), 253–273 (1994)

    Article  MATH  Google Scholar 

  8. Tamagnini, C., Viggiani, G., Chambon, R., Desrues, J.: Evaluation of different strategies for the integration of hypoplastic constitutive equations: application to the CLoE model. Mech. Cohesive-frictional Mater. Int. J. Exp. Modell. Comput. Mater. Struct. 5(4), 263–289 (2000)

    Google Scholar 

  9. Mroz, Z., Norris, V.A., Zienkiewicz, O.C.: Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique 29(1), 1–34 (1979)

    Article  Google Scholar 

  10. Mills, P., Loggia, D., Tixier, M.: Model for a stationary dense granular flow along an inclined wall. Europhys. Lett. 45(6), 733–738 (1999)

    Article  ADS  Google Scholar 

  11. Aranson, I.S., Tsimring, L.S.: Continuum description of avalanches in granular media. Phys. Rev. E 64(2), 020301 (2001)

    Article  ADS  Google Scholar 

  12. Pouliquen, O., Forterre, Y., Le Dizes, S.: Slow dense granular flows as a self-induced process. Adv. Complex Syst. 4(04), 441–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bocquet, L., Losert, W., Schalk, D., Lubensky, T.C., Gollub, J.P.: Granular shear flow dynamics and forces: experiment and continuum theory. Phys. Rev. E 65(1), 011307 (2001)

    Article  ADS  Google Scholar 

  14. Mohan, L.S., Rao, K.K., Nott, P.R.: A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457, 377–409 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Josserand, C., Lagrée, P.-Y., Lhuillier, D.: Stationary shear flows of dense granular materials: a tentative continuum modellings. Eur. Phys. J. E 14(2), 127–135 (2004)

    Article  Google Scholar 

  16. Kumaran, V.: Constitutive relations and linear stability of a sheared granular flow. J. Fluid Mech. 506, 1–43 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641–692 (2006)

    Article  ADS  Google Scholar 

  18. Radjai, F., Roux, J.N., Daouadji, A.: Modeling granular materials: century-long research across scales. J. Eng. Mech. 143(4), 04017002 (2017)

    Google Scholar 

  19. Guo, X., Peng, C., Wu, W., Wang, Y.: A hypoplastic constitutive model for debris materials. Acta Geotech. 11(6), 1217–1229 (2016)

    Article  Google Scholar 

  20. Peng, C., Guo, X., Wu, W., Wang, Y.: Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech. 11(6), 1231–1247 (2016)

    Article  Google Scholar 

  21. Roux, J.N., Combe, G.: Quasistatic rheology and the origins of strain. C. R. Phys. 3(2), 131–140 (2002)

    Article  ADS  Google Scholar 

  22. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Chambon, G., Bouvarel, R., Laigle, D., Naaim, M.: Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J. Nonnewton. Fluid Mech. 166(12–13), 698–712 (2011)

    Article  MATH  Google Scholar 

  24. Campbell, C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22(1), 57–90 (1990)

    Article  ADS  Google Scholar 

  25. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35(1), 267–293 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)

    Article  Google Scholar 

  27. Azanza, E., Chevoir, F., Moucheront, P.: Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199–227 (1999)

    Article  ADS  MATH  Google Scholar 

  28. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Andreotti, B., Daerr, A., Douady, S.: Scaling laws in granular flows down a rough plane. Phys. Fluids 14(1), 415–418 (2002)

    Article  ADS  MATH  Google Scholar 

  30. Savage, S.B., Nohguchi, Y.: Similarity solutions for avalanches of granular materials down curved beds. Acta Mech. 75(1–4), 153–174 (1988)

    Article  MATH  Google Scholar 

  31. Hutter, K., Nohguchi, Y.: Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mech. 82(1–2), 99–127 (1990)

    Article  MATH  Google Scholar 

  32. Gremaud, P.-A., Matthews, J.V., Shearer, M.: Similarity solutions for granular flows in hoppers. Contemp. Math. 255, 79–96 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Delannay, R., Louge, M., Richard, P., Taberlet, N., Valance, A.: Towards a theoretical picture of dense granular flows down inclines. Nat. Mater. 6(2), 99–108 (2007)

    Article  ADS  Google Scholar 

  34. Zheng, X.M., Hill, J.M.: Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Technol. 86(2), 219–227 (1996)

    Article  Google Scholar 

  35. Louge, M.Y., Valance, A., Lancelot, P., Delannay, R., Artières, O.: Granular flows on a dissipative base. Phys. Rev. E 92(2), 022204 (2015)

    Article  ADS  Google Scholar 

  36. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  ADS  Google Scholar 

  37. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)

    Article  ADS  MATH  Google Scholar 

  38. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  39. Silbert, L.E., Landry, J.W., Grest, G.S.: Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15(1), 1–10 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Hill, J.M.: Differential Equations and Group Methods for Scientists and Engineers. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). ISBN 0-8493-4442-5

    MATH  Google Scholar 

  41. Parez, S., Aharonov, E., Toussaint, R.: Unsteady granular flows down an inclined plane. Phys. Rev. E 93(4), 042902 (2016)

    Article  ADS  Google Scholar 

  42. Martin, N., Ionescu, I.R., Mangeney, A., Bouchut, F., Farin, M.: Continuum viscoplastic simulation of a granular column collapse on large slopes: \(\mu\) (I) rheology and lateral wall effects. Phys. Fluids 29(1), 013301 (2017)

    Article  ADS  Google Scholar 

  43. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: 2D granular flows with the \(\mu\) (I) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. 356, 192–219 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Pähtz, T., Durán, O., De Klerk, D.N., Govender, I., Trulsson, M.: Local rheology relation with variable yield stress ratio across dry, wet, dense, and dilute granular flows. Phys. Rev. Lett. 123(4), 048001 (2019)

    Article  ADS  Google Scholar 

  45. Rauter, M., Barker, T., Fellin, W.: Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput. Geotech. 122, 103492 (2020)

    Article  Google Scholar 

  46. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65(1), 011304 (2001)

    Article  ADS  Google Scholar 

  47. Bouzid, M., Izzet, A., Trulsson, M., Clément, E., Claudin, P., Andreotti, B.: Non-local rheology in dense granular flows. Eur. Phys. J. E 38(11), 125 (2015)

    Article  Google Scholar 

  48. Kamrin, K.: Non-locality in granular flow: phenomenology and modeling approaches. Front. Phys. 7, 116 (2019)

    Article  Google Scholar 

  49. Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1909), 5091–5107 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Roy, S., Luding, S., Weinhart, T.: A general (ized) local rheology for wet granular materials. New J. Phys. 19(4), 043014 (2017)

    Article  ADS  Google Scholar 

  51. Barker, T., Schaeffer, D.G., Bohórquez, P., Gray, J.M.N.T.: Well-posed and ill-posed behaviour of the \(\mu (I)\)-rheology for granular flow. J. Fluid Mech. 779, 794–818 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Barker, T., Gray, J.M.N.T.: Partial regularisation of the incompressible \(\mu (I)\)-rheology for granular flow. J. Fluid Mech. 828, 5–32 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JMH gratefully acknowledges the hospitality and the financial support provided by the Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna, during which time this work was undertaken. DB wishes to acknowledge the financial support provided by a grant from the Otto Pregl Foundation for Fundamental Geotechnical Research in Vienna, Austria. The authors also thank the two reviewers for extensive commentary that has materially improved the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the writing and preparation of this paper.

Corresponding author

Correspondence to Debayan Bhattacharya.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Integral evaluation for analytical solution (\(\mu _{\infty } = \mu _{0}\))

Appendix A: Integral evaluation for analytical solution (\(\mu _{\infty } = \mu _{0}\))

In this appendix we evaluate the integral arising in Eq. (21) and given by,

$$\begin{aligned} J = \int \frac{\sin \zeta }{(\sigma + \sin \zeta )^2}d\zeta \end{aligned}$$
(24)

On making the successive substitutions,

$$\begin{aligned} t = \tan ({\zeta }/{2}), \quad x = \sigma ^{1/2}t + {1}/{\sigma ^{1/2}}, \end{aligned}$$

we might deduce

$$\begin{aligned} J = 4 \int \frac{t dt}{(\sigma t^2 +2t +\sigma )^2} = \frac{4}{\sigma }\int \frac{(x-{1}/{\sigma ^{1/2})}}{(x^2 - a^2)^2} dx \quad , \end{aligned}$$

where \(a = {(1-\sigma ^2)^{1/2}}/{\sigma ^{1/2}}\). With the further substitution \(x = a \cosh \varTheta\) we might deduce

$$\begin{aligned} J = - \frac{2}{\sigma (x^2 - a^2)} -\frac{4}{\sigma ^{3/2}a^3} \int {{\rm{csch}} ^3 \varTheta } d \varTheta \quad , \end{aligned}$$

so that

$$\begin{aligned} K = \int \frac{d\varTheta }{\sinh ^3 \varTheta } = - \frac{\coth \varTheta }{\sinh \varTheta } - \int \frac{\coth \varTheta }{\sinh ^2 \varTheta }\cosh \varTheta d\varTheta \quad , \end{aligned}$$

and therefore,

$$\begin{aligned} 2K = -\frac{\cosh \varTheta }{\sinh ^2 \varTheta } - \ln \tanh \left( \frac{\varTheta }{2} \right) \quad . \end{aligned}$$

The above expression may be simplified to give

$$\begin{aligned} \begin{aligned} J =&- \frac{2}{\sigma (\sigma t^2 + 2t + \sigma )} \\&+\frac{2}{(1-\sigma ^2)^{3/2}}\left[ \frac{(1-\sigma ^2)^{1/2}(1+\sigma t)}{\sigma (\sigma t^2 + 2t + \sigma )}\right. \\&\left. + \frac{1}{2}\ln \left( \frac{\sigma t +1 - (1-\sigma ^2)^{1/2}}{\sigma t +1 + (1-\sigma ^2)^{1/2}}\right) \right] , \end{aligned} \end{aligned}$$

where we have used,

$$\begin{aligned} \tanh ({\varTheta }/{2}) = {\sinh \varTheta }/{(1+\cosh \varTheta )} \quad , \end{aligned}$$

and \({x}/{a} = ({\sigma t +1 })/{(1-\sigma ^2)^{1/2}}\). Further simplification gives

$$\begin{aligned} J= & {} -\frac{2\cos ^2 ({\zeta }/{2})}{\sigma (\sigma + \sin \zeta )} + \frac{2}{(1-\sigma ^2)^{3/2}} \\&\left[ \frac{\left( 1-\sigma ^2\right) ^{1/2}\left( 1+\sigma \tan ({\zeta }/{2})\right) \cos ^2 ({{\zeta }/{2}})}{\sigma (\sigma + \sin \zeta )} \right. \\&\left. + \frac{1}{2}\ln \left( \frac{\sigma \tan ({\zeta }/{2}) +1 -(1-\sigma ^2)^{1/2}}{\sigma \tan ({\zeta }/{2}) +1 +(1-\sigma ^2)^{1/2}}\right) \right] + C \quad , \end{aligned}$$

where C denotes a constant of integration, and

$$\begin{aligned} J =&\frac{2 \cos ^2 ({\zeta }/{2})\left( \sigma + \tan ({\zeta }/{2})\right) }{(1-\sigma ^2)(\sigma + \sin \zeta )} \\&+\frac{1}{(1-\sigma ^2)^{3/2}} \ln \left( \frac{\sigma \tan ({\zeta }/{2}) +1 -(1-\sigma ^2)^{1/2}}{\sigma \tan ({\zeta }/{2}) +1 +(1-\sigma ^2)^{1/2}}\right) + C \quad . \end{aligned}$$

On using

$$\begin{aligned} 2\cos ^2({\zeta }/{2})\left( \sigma + \tan ({\zeta }/{2})\right) = (\sigma + \sin \zeta + \sigma \cos \zeta ) \end{aligned}$$

we finally obtain

$$\begin{aligned} J =&\frac{\sigma \cos \zeta }{(1-\sigma ^2)(\sigma + \sin \zeta )} + \frac{1}{(1-\sigma ^2)^{3/2}}\ln \\&\quad \left[ \frac{\sigma \tan ({\zeta }/{2})+1 - (1-\sigma ^2)^{1/2}}{\sigma \tan ({\zeta }/{2})+1 + (1-\sigma ^2)^{1/2}}\right] + C^{*} \quad , \end{aligned}$$

where \(C^{*}\) denotes a different constant of integration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, J.M., Bhattacharya, D. & Wu, W. Steady-state similarity velocity profiles for dense granular flow down inclined chutes. Granular Matter 23, 27 (2021). https://doi.org/10.1007/s10035-020-01085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01085-z

Keywords

Navigation