Skip to main content
Log in

Particle shape effects on the shear behaviors of granular assemblies: irregularity and elongation

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This study examines the influence of particle shape irregularity and elongation on the shear behaviors of granular materials using the 3D discrete element method (DEM). The particles are generated by combining a Fourier shape descriptor-based method with the random field theory and reconstructed in DEM using the overlapping sphere algorithm. A series of drained and undrained triaxial and true triaxial tests are performed to shear the samples with different particle irregularity and elongation to the critical state. The stress and the strain responses, the evolution of the fabric anisotropy and the coordination number are examined and analyzed within the framework of the anisotropic critical state theory. It is found that the consideration of complex shaped particles in DEM produces more realistic sand behaviors, and the shear strength and the dilation of the granular material increase with increasing irregularity and elongation. While elongation in the range of the study has insignificant influence on the location of the critical state line (CSL) on the void ratio-mean effective stress plane, irregularity is found to positively affect both the absolute slope and the intercept of the CSL. The unique fabric anisotropy norm at the critical state is also sensitive to the particle shape and is greater with larger irregularity and elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Azema, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2019)

    Article  Google Scholar 

  2. Galindo-Torres, S.A., Muñoz, J.D., Alonso-Marroquín, F.: Minkowski–Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82, 056713 (2010)

    Article  ADS  Google Scholar 

  3. Galindo-Torres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E 81, 061303 (2010)

    Article  ADS  Google Scholar 

  4. Lin, X., Ng, T.-T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Article  Google Scholar 

  5. Fu, P., Dafalias, Y.F.: Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int. J. Numer. Anal. Methods Geomech. 35(18), 1918–1948 (2011)

    Article  Google Scholar 

  6. Ouadfel, H., Rothenburg, L.: ‘Stress–force–fabric’ relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  7. Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018)

    Article  Google Scholar 

  8. Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.A., Ramaioli, M., Liebling, T.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2–3), 119–126 (2005)

    Article  MATH  Google Scholar 

  9. Hogue, C.: Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng. Comput. 15(3), 374–390 (1998)

    Article  MATH  Google Scholar 

  10. Zhao, S., Zhao, J.: A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43(13), 2147–2169 (2019)

    Article  Google Scholar 

  11. Andrade, J.E., Lim, K.-W., Avila, C.F., Vlahinić, I.: Granular element method for computational particle mechanics. Comput. Methods Appl. Mech. Eng. 241–244, 262–274 (2012)

    Article  MATH  ADS  Google Scholar 

  12. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018)

    Article  ADS  Google Scholar 

  13. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69–80 (2007)

    Google Scholar 

  14. Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)

    Article  Google Scholar 

  15. Xu, W.-J., Liu, G.-Y., Yang, H.: Study on the mechanical behavior of sands using 3D discrete element method with realistic particle shape. Acta Geotech. 15(10), 2813–2828 (2020)

    Article  Google Scholar 

  16. Wang, J., Yu, H.S., Langston, P., Fraige, F.: Particle shape effects in discrete element modelling of cohesive angular particles. Granul. Matter 13(1), 1–12 (2011)

    Article  Google Scholar 

  17. Xie, Y.H., Yang, Z.X., Barreto, D., Jiang, M.D.: The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granul. Matter 19(2), 35 (2017)

    Article  Google Scholar 

  18. Zhao, J., Guo, N.: Rotational resistance and shear-induced anisotropy in granular media. Acta Mech. Solida Sin. 27(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gong, J., Liu, J.: Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using discrete element method. Particuology 32, 49–62 (2017)

    Article  Google Scholar 

  20. Bornert, M., Lenoir, N., Bésuelle, P., Pannier, Y., Hall, S.A., Viggiani, G., Desrues, J.: Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5), 315–322 (2010)

    Article  Google Scholar 

  21. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55(1), 31–63 (2010)

    Google Scholar 

  22. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  23. Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014)

    Article  MATH  ADS  Google Scholar 

  24. Mollon, G., Zhao, J.: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matter 14(5), 621–638 (2012)

    Article  Google Scholar 

  25. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15(1), 95–108 (2013)

    Article  Google Scholar 

  26. Bowman, E.T., Soga, K., Drummond, W.: Particle shape characterisation using Fourier descriptor analysis. Géotechnique 51(6), 545–554 (2000)

    Article  Google Scholar 

  27. Das, N.: Modeling three-dimensional shape of sand grains using Discrete Element Method. Ph.D thesis, University of South Florida (2007)

  28. Zhou, B., Wang, J.: Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis. Int. J. Numer. Anal. Methods Geomech. 41(1), 93–109 (2017)

    Article  Google Scholar 

  29. Zhou, B., Wang, J., Zhao, B.: Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics. Eng. Geol. 184(14), 126–137 (2015)

    Article  Google Scholar 

  30. Mollon, G., Quacquarelli, A., Andò, E., Viggiani, G.: Can friction replace roughness in the numerical simulation of granular materials? Granul. Matter 22, 42 (2020)

    Article  Google Scholar 

  31. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012)

    Google Scholar 

  32. Gross, D., Li, M.: Constructing microstructures of poly- and nanocrystalline materials for numerical modeling and simulation. Appl. Phys. Lett. 80(5), 746–748 (2002)

    Article  ADS  Google Scholar 

  33. Li, C.C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)

    Google Scholar 

  34. Matsushima, T., Saomoto, H.: Discrete element modeling for irregularly-shaped sand grains. In: Proc. NUMGE2002, pp. 239–246 (2002)

  35. Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197(49), 4429–4443 (2008)

    Article  MATH  ADS  Google Scholar 

  36. Altuhafi, F., O’Sullivan, C., Cavarretta, I.: Analysis of an image-based method to quantify the size and shape of sand particles. J. Geotech. Geoenviron. Eng. 139(8), 1290–1307 (2013)

    Article  Google Scholar 

  37. Kuhn, M.R., Renken, H.E., Mixsell, A.D., Kramer, S.L.: Investigation of cyclic liquefaction with discrete element simulations. J. Geotech. Geoenviron. Eng. 140(12), 04014075 (2014)

    Article  Google Scholar 

  38. Thornton, C., Antony, S.J.: Quasi-static shear deformation of a soft particle system. Powder Technol. 109(1–3), 179–191 (2000)

    Article  Google Scholar 

  39. Zhao, J., Guo, N.: The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 65(8), 642–656 (2015)

    Article  Google Scholar 

  40. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  41. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y., Wadee, M.A.: DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granul. Matter 16(5), 641–655 (2014)

    Article  Google Scholar 

  42. Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8), 695–704 (2013)

    Article  Google Scholar 

  43. Thornton, C., Zhang, L.: On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Géotechnique 60(5), 333–341 (2010)

    Article  Google Scholar 

  44. Lade, P.V., Duncan, J.M.: Elastoplastic stress-strain theory for cohesionless soil. J. Geotech. Eng. Div. 101(10), 1037–1053 (1975)

    Article  Google Scholar 

  45. Oda, M.: Fabric tensor for discontinuous geological materials. Soils Found. 22(4), 96–108 (1982)

    Article  Google Scholar 

  46. Yang, Z.X., Wu, Y.: Critical state for anisotropic granular materials: a discrete element perspective. Int. J. Geomech. 17(2), 04016054 (2017)

    Article  Google Scholar 

  47. Thornton, C., Antony, S.J.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. Lond. A 356(1747), 2763–2782 (1998)

    Article  MATH  ADS  Google Scholar 

  48. Edwards, S.F.: The equations of stress in a granular material. Phys. A 249(1–4), 226–231 (1998)

    Article  Google Scholar 

  49. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)

    Article  Google Scholar 

  50. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  51. Chen, Y.N., Yang, Z.X.: A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Comput. Geotech. 90, 133–143 (2017)

    Article  Google Scholar 

  52. Dafalias, Y.F., Taiebat, M.: SANISAND-Z: zero elastic range sand plasticity model. Géotechnique 66(12), 1–15 (2016)

    Article  Google Scholar 

  53. Yang, Z.X., Xu, T.T., Li, X.S.: J2-deformation type model coupled with state dependent dilatancy. Comput. Geotech. 105, 129–141 (2019)

    Article  Google Scholar 

  54. Li, X.S., Wang, Y.: Linear representation of steady-state line for sand. J. Geotech. Geoenviron. Eng. 124(12), 1215–1217 (1998)

    Article  Google Scholar 

  55. Yang, J., Luo, X.D.: Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of China (Nos. 51825803, 52020105003, and 51809229) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M.Q., Guo, N. & Yang, Z.X. Particle shape effects on the shear behaviors of granular assemblies: irregularity and elongation. Granular Matter 23, 25 (2021). https://doi.org/10.1007/s10035-021-01096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01096-4

Keywords

Navigation