Skip to main content
Log in

Essential Self-Adjointness and the \(L^2\)-Liouville Property

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We discuss connections between the essential self-adjointness of a symmetric operator and the constancy of functions which are in the kernel of the adjoint of the operator. We then illustrate this relationship in the case of Laplacians on both manifolds and graphs. Furthermore, we discuss the Green’s function and when it gives a non-constant harmonic function which is square integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory Graduate Texts in Mathematics, vol. 137, 2, Springer-Verlag. New York (2001). https://doi.org/10.1007/978-1-4757-8137-3

  2. Boscain, U., Prandi, D.: Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. J. Differ. Equ. 260(4), 3234–3269 (2016). https://doi.org/10.1016/j.jde.2015.10.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12, 401–414 (1973)

    Article  MathSciNet  Google Scholar 

  4. Chen, R., Li, P.: On Poincaré type inequalities. Trans. Amer. Math. Soc. 349(4), 1561–1585 (1997). https://doi.org/10.1090/S0002-9947-97-01813-8

    Article  MathSciNet  MATH  Google Scholar 

  5. de Verdière, C.Y.: Pseudo-laplaciens, I, French, with English summary. Ann. Inst. Fourier (Grenoble) 32(3), 275–286 (1982)

  6. Frank, R.L., Lenz, D., Wingert, D.: Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory. J. Funct. Anal. 266(8), 4765–4808 (2014). https://doi.org/10.1016/j.jfa.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  7. Gaffney, M.P.: The harmonic operator for exterior differential forms. Proc. Natl. Acad. Sci. U. S. A. 37, 48–50 (1951)

    Article  MathSciNet  Google Scholar 

  8. Gaffney, M.P.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. (2) 60, 140–145 (1954)

  9. Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs of finite measure, J. Math. Pures Appl. (9) 103(5), 1093–1131. (2015). https://doi.org/10.1016/j.matpur.2014.10.006

  10. Gesztesy, F., Mitrea, M.: A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains. J. Anal. Math. 113, 53–172 (2011). https://doi.org/10.1007/s11854-011-0002-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigor\(^{\prime }\)yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36(2), 135–249. (1999). https://doi.org/10.1090/S0273-0979-99-00776-4

  12. Grigor\(^{\prime }\)yan, A.: Introduction to Analysis on Graphs University Lecture Series, 71, American Mathematical Society, Providence, RI. (2018) https://doi.org/10.1090/ulect/071

  13. Grigor\(^{\prime }\)yan, A.: Heat Kernel and Analysis on Manifolds AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, (2009)

  14. Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2(4), 397–432 (2012)

  15. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 1, 2. Courant Institute of Mathematical Sciences, American Mathematical Society, New York (2011)

    Google Scholar 

  16. Hinz, M., Kang, S., Masamune, J.: Probabilistic characterizations of essential self-adjointness and removability of singularities, English, with English and Russian summaries, Mat. Fiz. Komp\(^\prime \) yut. Model. 3(40), 148–162. (2017). https://doi.org/10.15688/mpcm.jvolsu.2017.3.11

  17. Hua, B., Keller, M.: Harmonic functions of general graph Laplacians. Calc. Var. Partial Differ. Equ. 51(1–2), 343–362 (2014). https://doi.org/10.1007/s00526-013-0677-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265(8), 1556–1578 (2013). https://doi.org/10.1016/j.jfa.2013.06.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Inoue, A.: Essential self-adjointness of Schrödinger operators on the weighted integers, forthcoming

  20. Inoue, A., Masamune, J., Wojciechowski, R.K.: Essential self-adjointness of the Laplacian on weighted graphs: stability and characterizations, forthcoming

  21. Keller, M.: Intrinsic Metrics on Graphs: A Survey Mathematical Technology of Networks, Springer Proc. Math. Stat., 128, Springer, Cham, (2015), pp. 81–119

  22. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012). https://doi.org/10.1515/CRELLE.2011.122

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, M., Lenz, D., Wojciechowski, R.K.: Volume growth, spectrum and stochastic completeness of infinite graphs. Math. Z. 274(3–4), 905–932 (2013). https://doi.org/10.1007/s00209-012-1101-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, P.: Geometric Analysis Cambridge Studies in Advanced Mathematics, 134, Cambridge University Press, Cambridge. (2012). https://doi.org/10.1017/CBO9781139105798

  25. Li, P., Schoen, R.: \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153(3–4), 279–301 (1984). https://doi.org/10.1007/BF02392380

    Article  MathSciNet  MATH  Google Scholar 

  26. Masamune, J.: Essential self-adjointness of Laplacians on Riemannian manifolds with fractal boundary. Comm. Partial Differ. Equ. 24(3–4), 749–757 (1999). https://doi.org/10.1080/03605309908821442

    Article  MathSciNet  MATH  Google Scholar 

  27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I, 2, Functional Analysis. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1980)

  28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, London (1975)

  29. Schmidt, M.: Global properties of Dirichlet forms on discrete spaces. Dissertationes Math. 522, 43 (2017). https://doi.org/10.4064/dm738-7-2016

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmidt, M.: On the Existence and Uniqueness of Self-adjoint Realizations of Discrete (Magnetic) Schrödinger Operators, Analysis and Geometry on Graphs and Manifolds. London Math. Soc. Lecture Note Ser., 461, Cambridge Univ. Press, Cambridge (2020)

  31. Soardi, P.M.: Potential Theory on Infinite Networks. Lecture Notes in Mathematics, 1590, Springer-Verlag, Berlin, (1994)

  32. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983). https://doi.org/10.1016/0022-1236(83)90090-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Woess, W.: Random: Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, Cambridge, (2000), https://doi.org/10.1017/CBO9780511470967

  34. Woess, W.: Denumerable Markov chains, EMS Textbooks in Mathematics, Generating Functions, Boundary Theory, Random Walks on Trees, European Mathematical Society (EMS). Zürich (2009). https://doi.org/10.4171/071

  35. Wojciechowski, R.K.: Stochastic Completeness of Graphs, Thesis (Ph.D.)—City University of New York, ProQuest LLC, Ann Arbor, MI, (2008), 87

  36. Wojciechowski, R.K.: Stochastic completeness of graphs: bounded Laplacians, intrinsic metrics, volume growth and curvature. J. Fourier Anal. Appl. to appear, arXiv:2010.02009 [math.MG]

  37. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Marcel Schmidt for a careful reading of the manuscript and for helpful comments. R.K.W. would also like to thank Józef Dodziuk for his support and for many fruitful discussions. Furthermore, the authors would like to thank the referees for useful comments and Isaac Pesenson for the invitation to submit this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław K. Wojciechowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B.H. is supported by NSFC, Grants Numbers 11831004 and 11926313. J.M. is supported in part by JSPS KAKENHI Grant Numbers 18K03290 and 17H01092. R.W. is supported by PSC-CUNY Awards, jointly funded by the Professional Staff Congress and the City University of New York, and the Collaboration Grant for Mathematicians, funded by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, B., Masamune, J. & Wojciechowski, R.K. Essential Self-Adjointness and the \(L^2\)-Liouville Property. J Fourier Anal Appl 27, 26 (2021). https://doi.org/10.1007/s00041-021-09833-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09833-2

Navigation