Skip to main content

Advertisement

Log in

An ultra-energy-efficient crosstalk-immune interconnect architecture based on multilayer graphene nanoribbons for deep-nanometer technologies

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An ultra-energy-efficient interconnect structure based on multilayer graphene nanoribbon (MLGNR) interconnects for deep-nanometer technologies is proposed herein. First, a low-swing interconnect based on MLGNRs and high-performance interface circuits using carbon nanotube field-effect transistors (CNTFETs) is proposed. Then, an ultra-energy-efficient interconnect structure is obtained by actively shielding such low-swing lines. The structures under study are simulated comprehensively at the 7-nm technology node. The results indicate that the MLGNR interconnect is significantly more energy efficient than its multiwall carbon nanotube (MWCNT) counterpart in the low-voltage regime. Moreover, the proposed approach is superior to its MLGNR counterparts. The proposed structure leads to 86%, 75%, and 31% lower energy consumption over a length of 500 µm as compared with the typical, actively shielded, and low-swing MLGNR interconnects, respectively. Moreover, the impact of the ratio of the widths of the signal line to the shield line on the performance of the interconnects is evaluated. The energy consumption reduction achieved by the proposed approach is mostly preserved even when using minimum-width shield lines on wider signal lines to reduce the area overhead. Moreover, the impact of process variations on the performance of the interconnects is assessed using Monte Carlo simulations, demonstrating the robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nieuwoudt, A., Massoud, Y.: On the optimal design, performance, and reliability of future carbon nanotube-based interconnect solutions. IEEE Trans. Electron Dev.55(8), 2097–2110 (2008)

    Article  Google Scholar 

  2. Mencarelli, D., Pierantoni, L., Farina, M., Di Donato, A.., Rozzi, T.: A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons. ACS Nano5(8), 6109–6118 (2011)

    Article  Google Scholar 

  3. Mencarelli, D., Rozzi, T., Pierantoni, L.: Coherent carrier transport and scattering by lattice defects in single- and multibranch carbon nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys.77(19), 195435 (2008)

    Article  Google Scholar 

  4. Bistarelli, S., Sun, S., Pierantoni, L., Bellucci, S., Mencarelli, D., Lui, J.: Evaluating CNT-based interconnects: a nummerical tool to characterize Hybrid CNT-copper interconnects. IEEE Microw. Mag.18(4), 124–129 (2017)

    Article  Google Scholar 

  5. Kumbhare, V.R., Paltani, PP., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol.18, 606–610 ( 2019)

    Article  Google Scholar 

  6. Chen, X., Fully integrated graphene and carbon nanotube Interconnects for Gigahertz high-speed CMOS electronics. IEEE Trans. Electron Dev.57(11), 3137–3143 (2010)

    Article  Google Scholar 

  7. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Dev. 56(8), 1567–1578 (2009)

    Article  Google Scholar 

  8. Hazra, A., Basu, S.: Graphene nanoribbon as potential on-chip interconnect material—A review C—J. Carbon Res.4(3), 49 (2018)

    Article  Google Scholar 

  9. Kaul, H., Sylvester, D., Blaauw, D.: Performance optimization of critical nets through active shielding. IEEE Trans. Circuits Syst. I Regul. Pap.51(12), 2417–2435 (2004)

    Article  Google Scholar 

  10. Sidhu, R., Rai, M.K., Kaushik, B.K.: Temperature-dependent crosstalk between adjacent MLGNR interconnects of different dimensions and its impact on gate oxide reliability. J. Comput. Electron.19(1), 177–190 (2020)

    Article  Google Scholar 

  11. Hamedani, S.G., Moaiyeri, M.H.: Comparative analysis of the crosstalk effects in multilayer graphene nanoribbon and MWCNT interconnects in Sub-10 nm technologies. IEEE Trans. Electromag. Compatib.62(2), 561–570 (2020)

    Article  Google Scholar 

  12. Wang, A., Calhoun, BH.,Chandraksan, AP.: Sub-Threshold Design for Ultra Low-Power Systems. Springer, New York 2006

    Google Scholar 

  13. Palesi, M., Ascia, G., Fazzino, F., Catania, V.: Data encoding schemes in networks on chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.30(5): 774–786 (2011)

    Article  Google Scholar 

  14. Sabetzadeh, F., Moaiyeri, M.H., Ahmadinejad, M.: A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE T. Circ. Syst. 66(11), 4200–4208 (2019).

    Google Scholar 

  15. Zhang, H., George, V., Rabaey, JM.: Low-swing on-chip signaling techniques: effectiveness and robustness IEEE Trans. Very Large Scale Integr. VLSI Syst. 8(3), 264–272 (2000)

    Article  Google Scholar 

  16. Patel, N.R., Agrawal, Y., Parekh, R.: Novel subthreshold modelling of advanced on-chip graphene interconnect using numerical method analysis. IETE J. Res. 67(1), 98–107 (2018)

    Article  Google Scholar 

  17. Qi, H., Ayorinde, O., Huang, Y., Calhoun, B.: Optimizing energy efficient low-swing interconnect for sub-threshold FPGAs. In: 2015 25th International Conference on Field Programmable Logic and Applications (FPL), London, 2015, pp. 1–4

  18. Dhiman, R., Chandel, R.: Delay analysis of buffer inserted subthreshold interconnects. Analog Integr. Circ. Sig. Process 90(2), 435–445 (2017)

    Article  Google Scholar 

  19. Jiang, J., Mao, Z., Sheng, W., Wang, Q., He, Q.: Delay analysis and design optimization for low-swing RC-limited global interconnects. J. Circuits Syst. Comp.25(10), 1650121 (2016)

    Article  Google Scholar 

  20. Agrawal, Y., Girish Kumar, M., Chandel, R.: A novel unified model for copper and MLGNR interconnects using voltage- and current-mode signaling schemes. IEEE Trans. Electromag. Compatib. 59(1), 217–227 (2017)

    Article  Google Scholar 

  21. Vudadha, C., Rajagopalan, S., Dusi, A, Phaneendra, P.S., Srinivas, M.B.: Encoder-based optimization of CNFET-based ternary logic circuits. IEEE Trans. Nanotechnol. 17(2), 299–310 (2018)

    Article  Google Scholar 

  22. Tamersit, K.: Computational study of p-n carbon nanotube tunnel field-effect transistor. IEEE Trans. Electron Devices67(2), 704–710 (2020)

    Article  Google Scholar 

  23. Nasiri, S.H., Moravvej-Farshi, M.K., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Dev. Lett.31(12), 1458–1460 (2010)

    Article  Google Scholar 

  24. Sahoo, M., Ghosal, P., Rahaman, H.: Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach. IEEE Trans. Nanotechnol.14(2), 259–274 (2015)

    Article  Google Scholar 

  25. Zhao, W., Yin, W.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects IEEE Trans. Electromagn. Compat.56(3), 638–645 (2014)

    Article  Google Scholar 

  26. Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.98, 206805 (2007)

    Article  Google Scholar 

  27. Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett.28(5), 428–431 (2007)

    Article  Google Scholar 

  28. Cui, J., Zhao, W., Yin, W., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat.54(1), 126–132 (2012)

    Article  Google Scholar 

  29. Mona Chanu, W., Das, D.: Temperature-dependent analysis of crosstalk and delay uncertainty in multilayer graphene nanoribbon interconnects. Engineering Reports, p. e12185, (2020)

  30. Kumbhare, V.R., Paltani, P.P., Majumder, M.K.: Impact of interconnect spacing on crosstalk for multi-layered graphene nanoribbon. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1637788.

    Article  Google Scholar 

  31. Moaiyeri, M. H., Taheri, Z. M., Khezeli, M. R., Jalali, A.: Efficient passive shielding of MWCNT interconnects to reduce crosstalk effects in multiple-valued logic circuits. IEEE T. Electromagn C. 61(5), 1593–1601 (2019)

    Article  Google Scholar 

  32. Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices47(1), 222–231 (2000)

    Article  Google Scholar 

  33. Rabaey, J.: Low Power Design Essentials. New York, NY, USA: Springer, April 2009, p. 31, ISBN: 978-0-387-71712-8.

  34. Lanuzza, M., Crupi, F., Rao, S., Rose, R ., De Strangio, S., Iannaccone, G.: An ultralow-voltage energy-efficient level shifter IEEE Trans. Circuits Syst. II Exp. Briefs 64(1), 61–65 2017

    Article  Google Scholar 

  35. International Technology Roadmap for Semiconductors (ITRS-2013) Reports, [Online]. Available: http://www.itrs2.net/reports.html.

  36. Lee, C., Pop, E., Franklin, AD., Haensch, W., Wong, H.-P.: A compact virtual-source model for carbon Nanotube FETs in the Sub-10-nm Regime—Part I: intrinsic elements. IEEE Trans. Electron Dev. 62(9), 3061–3069 (2015)

    Article  Google Scholar 

  37. Lee, C., Pop, E., Franklin, A.D., Haensch, W., Wong, H.P.: A compact virtual-source model for carbon nanotube FETs in the Sub-10-nm regime—Part II: extrinsic elements, performance assessment, and design optimization. IEEE Trans. Electron Devices62(9), 3070–3078 (2015)

    Article  Google Scholar 

  38. Gharavi Hamedani, S., Moaiyeri, M.H.: Impacts of process and temperature variations on the crosstalk effects in Sub-10 nm Multilayer graphene nanoribbon interconnects. IEEE Trans. Dev. Mater. Reliab. 19 (4), 630–641 ( 2019)

    Article  Google Scholar 

  39. Kukkam, N.R., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)

    Article  Google Scholar 

  40. Agrawal, Y., Chandel, R., Dhiman, R.: Variability analysis of stochastic parameters on the electrical performance of on-chip current-mode interconnect system. IETE J. Res. 63 (2), 268–280 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Moaiyeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, R., Moaiyeri, M.H. & Gharavi Hamedani, S. An ultra-energy-efficient crosstalk-immune interconnect architecture based on multilayer graphene nanoribbons for deep-nanometer technologies. J Comput Electron 20, 1411–1421 (2021). https://doi.org/10.1007/s10825-021-01677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01677-9

Keywords

Navigation