Skip to main content
Log in

Non-Stationary Diffraction of a TM-Polarized Unipolar Pulse on a Perfectly Conducting Cylinder

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The problem of a unipolar electromagnetic pulse being diffracted by an ideally conducting cylinder is considered using a computational experiment. It is shown that the scattered field is bipolar for the chosen polarization, with which the magnetic component of the field is parallel to the cylinder axis. The shape of its temporal profile depends on the ratio of the cylinder’s radius and the spatial length of the incident pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kwang-Je Kim, McDonald, K.T., Stupakov, G.V., and Zolotorev, M.S., arXiv:physics/0003064, 2000.

  2. You, D., Jones, R.R., and Bucksbaum, P.H., Opt. Lett., 1993, vol. 18, no. 4, p. 290.

    Article  ADS  Google Scholar 

  3. Kornienko, V.N., Rumyantsev, D.R., and Chere-penin, V.A., Zh. Radioelektron., 2017, no. 3.

  4. Wu, H.-C. and Meyer-ter-Vehn, J., Nat. Photonics, 2012, vol. 6, p. 304.

    Article  ADS  Google Scholar 

  5. Xu, J., Shen, B., Zhang, X., et al., Sci. Rep., 2018, vol. 8, no. 1, p. 2669.

    Article  ADS  Google Scholar 

  6. Popolitova, D.V., Klenov, N.V., Soloviev, I.I., et al., Beilstein J. Nanotechnol., 2019, vol. 10, p. 1548.

    Article  Google Scholar 

  7. Nenovski, P., Acta Geod. Geophys., 2018, vol. 53, no. 4, p. 555.

    Article  Google Scholar 

  8. Jiang, Y., Dong, H., Almansour, H., et al., IEEE Instrum. Meas. Mag., 2018, vol. 21, no. 5, p. 41.

    Article  Google Scholar 

  9. You, D. and Bucksbaum, P.H., J. Opt. Soc. Am. B, 1997, vol. 14, no. 7, p. 1651.

    Article  ADS  Google Scholar 

  10. Kornienko, V.N., Kulagin, V.V., and Oleynikov, A.Ya., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 2, p. 203.

    Article  MathSciNet  Google Scholar 

  11. Kulagin, V.V., Kornienko, V.N., Cherepenin, V.A., et al., Quantum Electron., 2019, vol. 49, no. 8, p. 788.

    Article  ADS  Google Scholar 

  12. Taflove, A., Computational Electrodynamics: The Finite-Difference Time–Domain Method, London: Artech House, 1995.

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

Modeling was done with the computing resources of the Russian Academy of Sciences’ Interdepartmental Supercomputer Center.

Funding

This work was performed as part of a State Task for the Kotelnikov Institute of Radioengineering and Electronics. It was supported by the Russian Foundation for Basic Research, project no. 19-52-45035-IND_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kornienko.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornienko, V.N., Kulagin, V.V. Non-Stationary Diffraction of a TM-Polarized Unipolar Pulse on a Perfectly Conducting Cylinder. Bull. Russ. Acad. Sci. Phys. 85, 50–52 (2021). https://doi.org/10.3103/S1062873821010159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821010159

Navigation