Skip to main content
Log in

Features of the Complex Representation of Diffractal Wave Structures

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The amplitude and phase characteristics of spatial spectra are determined for wave beams whose initial field is described by complex fractal functions. It is shown that the observed asymmetry of the spectra and their resistance to the influence of noise can be used to improve the optical diagnostics of fractal formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Berry, M.V., J. Phys. A, 1979, vol. 12, no. 6, p. 781.

    Article  ADS  MathSciNet  Google Scholar 

  2. Averchenko, A.V., Konopaltseva, N.Yu., Korolenko, P.V., and Mishin, A.Yu., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 11, p. 1383.

    Article  MathSciNet  Google Scholar 

  3. Zotov, A.M., Korolenko, P.V., Mishin, A.Y., and Ryzhikova, Y.V., Moscow Univ. Phys. Bull. (Engl. Transl.), 2019, vol. 74, no. 6, p. 625.

  4. Giménez, F., Monsoriu, J.A., Furlan, W.D., and Pons, A., Opt. Express, 2006, vol. 14, no. 25, 11958.

    Article  ADS  Google Scholar 

  5. Grushina, N.V., Korolenko, P.V., and Markova, S.N., Moscow Univ. Phys. Bull. (Engl. Transl.), 2008, vol. 63, no. 2, p. 123.

  6. Horvath, P., Smıdt, P., Vaskova, I., and Hrabovsky. M., Optik, 2010, vol. 121, no. 2, p. 206.

    Article  ADS  Google Scholar 

  7. Moocarme, M. and Vuong, L.T., Opt. Express, 2015, vol. 23, no. 22, 28471.

    Article  ADS  Google Scholar 

  8. Musel, B., Bordier, C., Dojat, M., et al., J. Cogn. Neurosci., 2013, no. 8, p. 1315.

  9. Korolenko, P.V., Proc. of the Sci. Res. of the SCO Countries: Synergy and Integration, Beijing: Infinity, 2020, part 2, p. 160.

  10. Sroor, H., Naidoo, D., Miller, S.W., et al., Phys Rev. A, 2019, vol. 99, 013848.

    Article  ADS  Google Scholar 

  11. Ulyanov, A.S., Quantum Electron., 2008, vol. 38, no. 6, p. 557.

    Article  ADS  Google Scholar 

  12. Liu, Y.J., Dai, H.T., Sun, X.W., and Huang, T.J., Opt. Express, 2009, vol. 17, no. 15, 12418.

    Article  ADS  Google Scholar 

  13. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1977.

    Google Scholar 

  14. Zaleski, A., Rose-Hulman Undergrad. Math. J., 2012, vol. 13, no. 2, p. 80.

    Google Scholar 

  15. Ausloos, M. and Berman, D.H., Proc. R. Soc. London, 1985, p. 331.

  16. Humphrey, A.C., Schuler, C.A., and Rubinsky, B., Fluid Dyn. Res., 1992, vol. 9, nos. 1–3, p. 81.

    Article  ADS  Google Scholar 

  17. Jiang, S. and Zheng, Y., J. Mech. Eng. Sci., 2010, vol. 224, no. 4, p. 757.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Korolenko.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolenko, P.V., Kubanov, R.T. & Mishin, A.Y. Features of the Complex Representation of Diffractal Wave Structures. Bull. Russ. Acad. Sci. Phys. 85, 53–56 (2021). https://doi.org/10.3103/S1062873821010160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821010160

Navigation