Skip to main content

Advertisement

Log in

Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

To date, the efficiency and effectiveness of early warning systems of satellite imagery for preventing and mitigating wildfire remain a challenging issue. The heat of pre-ignition (\(Q_{{{\text{ig}}}}\)) can be an index of fire likelihood, which is further enhanced with remotely sensed data, active fire data, and fuels information for operational application of satellite imagery in fire early warning systems. \(Q_{{{\text{ig}}}}\) is a prerequisite for forest fires by the side of ignition sources and weather. This study analyzed the effect of \(Q_{{{\text{ig}}}}\) variation on fire occurrences to develop a remote sensing-based initial fire likelihood index for identifying areas that have a high probability of fire. In this study, \(Q_{{{\text{ig}}}}\) of Rothermel’s fire spread model daily data is retrieved at 1 km pixels from MODIS data. MODIS active fire products were used to interpret the \(Q_{{{\text{ig}}}}\) of fuels for 10 days before the days of fire occurrences in November 2010 to determine the pre-fire conditions. A formula for converting \(Q_{{{\text{ig}}}}\) into an initial fire likelihood index (IFLI) was then used by binary logistic regression method. Analyses show that there was a positive association between suggested IFLI and fire occurrences during the study period with a fair diagnostic accuracy of 92%, and 80% for dead and live fuels, respectively. Mann–kendall test suggested that there are significant trends in the fuel moisture content time-series for both live and dead fuels. Further analysis using the Hosmer–Lemeshow test represents that the models showed an acceptable fit. The suggested IFLI is an effective tool for fire management decision-making whenever a near real-time fire likelihood is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adab H (2014) Remote sensing based thermophysical approach for detecting forest pre-ignition in Iran. Universiti Teknologi Malaysia

  • Adab H (2017) Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data. Nat Hazards 87:1807–1825. https://doi.org/10.1007/s11069-017-2850-2

    Article  Google Scholar 

  • Adab H, Devi Kanniah K, Beringer J (2016) Estimating and up-scaling fuel moisture and leaf dry matter content of a temperate humid forest using multi resolution. Remote Sens Data Remote Sens 8:961

    Google Scholar 

  • Adab H, Kanniah K, Solaimani K (2013) Modeling forest fire risk in the Northeast of Iran using remote sensing and GIS techniques. Nat Hazards 65:1723–1743. https://doi.org/10.1007/s11069-012-0450-8

    Article  Google Scholar 

  • Adab H, Kanniah KD, Solaimani K (2011) GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. Paper presented at the 4th international conference on environmental and computer science (ICECS 2011), Singapore

  • Adelabu SA, Adepoju KA, Mofokeng OD (2020) Estimation of fire potential index in mountainous protected region using remote sensing. Geocarto Int 35:29–46. https://doi.org/10.1080/10106049.2018.1499818

    Article  Google Scholar 

  • Adhikari D, Barik SK, Upadhaya K (2012) Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng 40:37–43. https://doi.org/10.1016/j.ecoleng.2011.12.004

    Article  Google Scholar 

  • Aguado I, Chuvieco E, Boren R, Nieto H (2007) Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int J Wildland Fire 16:390–397

    Article  Google Scholar 

  • Albini F (1993) Dynamics and modelling of vegetation fires: observations. In: Crutzen P, Goldammer G (eds) The ecological, atmospheric and climate importance of vegetation fires. Wiley, pp 39–52

    Google Scholar 

  • Andersen GL, Nilsson S, Forest L (1998) Classification and estimation of forest and vegetation variables in optical high resolution satellites: a review of methodologies

  • Andrews PL, Queen LP (2001) Fire modeling and information system technology. Int J Wildland Fire 10:343–352

    Article  Google Scholar 

  • Balthazar V, Vanacker V, Lambin EF (2012) Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas. Int J Appl Earth Obs Geoinf 18:436–450. https://doi.org/10.1016/j.jag.2012.03.010

    Article  Google Scholar 

  • Benjumea P, Agudelo J, Agudelo A (2009) Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine. Fuel 88:725–731. https://doi.org/10.1016/j.fuel.2008.10.011

    Article  Google Scholar 

  • Bogdos N, Manolakos ES (2013) A tool for simulation and geo-animation of wildfires with fuel editing and hotspot monitoring capabilities. Environ Model Softw 46:182–195. https://doi.org/10.1016/j.envsoft.2013.03.009

    Article  Google Scholar 

  • Bonazountas M, Kallidromitou D, Kassomenos P, Passas N (2007) A decision support system for managing forest fire casualties. J Environ Manag 84:412–418. https://doi.org/10.1016/j.jenvman.2006.06.016

    Article  Google Scholar 

  • Brady M et al (2007) Developing a global early warning system for wildland fire. In: Sivakumar MK, Motha R (eds) Managing weather and climate risks in agriculture. Springer, Berlin, pp 355–366. https://doi.org/10.1007/978-3-540-72746-0_20

    Chapter  Google Scholar 

  • Castro JF, Bento J, Rego F (1990) Regeneration of Pinus pinaster forests after wildfire. Paper presented at the 3rd international fire ecology, Freiburg, Germany

  • Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (1983) Fire in Forestry, vol 1. Forest fire behavior and effects, Wiley

    Google Scholar 

  • Chuvieco E, Cocero D, Riano D, Martin P, Martınez-Vega J, de la Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331

    Article  Google Scholar 

  • Chuvieco E, Deshayes M, Stach N, Cocero D, Riaño D (1999) Short-term fire risk: foliage moisture content estimation from satellite data. In: Chuvieco E (ed) Remote sensing of large wildfires. Springer, Berlin, pp 17–38. https://doi.org/10.1007/978-3-642-60164-4_3

    Chapter  Google Scholar 

  • Chuvieco E, Riano D, Aguado I, Cocero D (2002) Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment. Int J Remote Sens 23:2145–2162

    Article  Google Scholar 

  • Cruz MG, Alexander ME, Sullivan AL, Gould JS, Kilinc M (2018) Assessing improvements in models used to operationally predict wildland fire rate of spread. Environ Model Softw 105:54–63. https://doi.org/10.1016/j.envsoft.2018.03.027

    Article  Google Scholar 

  • Csiszar IA, Morisette JT, Giglio L (2006) Validation of active fire detection from moderate-resolution satellite sensors: the MODIS example in northern eurasia. IEEE Trans Geosci Remote Sens 44:1757–1764

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJJE (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  Google Scholar 

  • Dasgupta S, Qu JJ, Xianjun H (2006) Design of a susceptibility index for fire risk monitoring. IEEE Geosci Remote Sens Lett 3:140–144

    Article  Google Scholar 

  • Davies DK, Ilavajhala S, Min Minnie W, Justice CO (2009) Fire Information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47:72–79

    Article  Google Scholar 

  • De Groot WJ, Goldammer JG, Justice CO, Lynham TJ, Csiszar IA, San-Miguel-Ayanz J (2010) Implementing a global early warning system for wildland fire. In: Viegas D (ed) Forest fire research. Coimbra, Portugal, pp 1–13

    Google Scholar 

  • Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. J BMC Bioinformatics 7:3. https://doi.org/10.1186/1471-2105-7-3

    Article  Google Scholar 

  • Dimitrakopoulos A, Mitsopoulos I, Gatoulas K (2010) Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel. Int J Wildland Fire 19:29–34

    Article  Google Scholar 

  • Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. Fire Technol 37:143–152. https://doi.org/10.1023/a:1011641601076

    Article  Google Scholar 

  • Drápela K, Drápelová I (2011) Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 4:133–146

    Google Scholar 

  • Eskandari S, Chuvieco E (2015) Fire danger assessment in Iran based on geospatial information. Int J Appl Earth Obs Geoinf 42:57–64. https://doi.org/10.1016/j.jag.2015.05.006

    Article  Google Scholar 

  • Eva H, Fritz S (2003) Examining the potential of using remotely sensed fire data to predict areas of rapid forest change in South America. Appl Geogr 23:189–204. https://doi.org/10.1016/j.apgeog.2003.08.009

    Article  Google Scholar 

  • Fernandes PM (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:1–9

    Article  Google Scholar 

  • Frandsen WH (1997) Ignition probability of organic soils. Can J For Res 27:1471–1477

    Article  Google Scholar 

  • Fulé PZ, Ribas M, Gutiérrez E, Vallejo R, Kaye MW (2008) Forest structure and fire history in an old Pinus nigra forest, eastern Spain. For Ecol Manag 255:1234–1242. https://doi.org/10.1016/j.foreco.2007.10.046

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random Forests for land cover classification. Pattern Recognit Lett 27:294–300. https://doi.org/10.1016/j.patrec.2005.08.011

    Article  Google Scholar 

  • Grimm R, Behrens T, Märker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using random forests analysis. Geoderma 146:102–113. https://doi.org/10.1016/j.geoderma.2008.05.008

    Article  Google Scholar 

  • Harmon M (1982) Fire history of the westernmost portion of Great Smoky Mountains National Park. Bull Torrey Bot Club 109:74–79

    Article  Google Scholar 

  • Jing W, Yang Y, Yue X, Zhao X (2016) A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over North China. Remote Sens 8:835

    Article  Google Scholar 

  • Justice CO et al (2002) The MODIS fire products. Remote Sens Environ 83:244–262. https://doi.org/10.1016/s0034-4257(02)00076-7

    Article  Google Scholar 

  • Kalabokidis K et al (2012) Decision support system for forest fire protection in the Euro-Mediterranean region. Eur J Forest Res 131:597–608. https://doi.org/10.1007/s10342-011-0534-0

    Article  Google Scholar 

  • Kendall M (1975) Multivariate analysis. Charles Griffin & Company Ltd

    Google Scholar 

  • Keramitsoglou I, Kontoes C, Sykioti O, Sifakis N, Xofis P (2008) Reliable, accurate and timely forest mapping for wildfire management using ASTER and Hyperion satellite imagery. For Ecol Manag 255:3556–3562. https://doi.org/10.1016/j.foreco.2008.01.077

    Article  Google Scholar 

  • Koutitas G, Pavlidou N, Jankovic L (2010) A comparative study of two alternative wildfire models, with applications to WSN topology control. Model Monit Manag Forest Fires II 137:1125

    Google Scholar 

  • Kozik VI, Nezhevenko ES, Feoktistov AS (2014) Studying the method of adaptive prediction of forest fire evolution on the basis of recurrent neural networks. Optoelectron Instrum Data Process 50:395–401. https://doi.org/10.3103/S8756699014040116

    Article  Google Scholar 

  • Lawson BD (1996) Probabilities of sustained ignition in lodgepole pine, interior Douglas-fir, and white spruce-subalpine fir forest types, vol 12. Canadian Forest Service

    Google Scholar 

  • Li X, Zhao G, Yu X, Yu Q (2014) A comparison of forest fire indices for predicting fire risk in contrasting climates in China. Nat Hazards 70:1339–1356. https://doi.org/10.1007/s11069-013-0877-6

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random. Forest R News 2:18–22

    Google Scholar 

  • Liodakis S, Bakirtzis D, Dimitrakopoulos A (2002) Ignition characteristics of forest species in relation to thermal analysis data. Thermochim Acta 390:83–91. https://doi.org/10.1016/S0040-6031(02)00077-1

    Article  Google Scholar 

  • Lymberopoulos N, Papadopoulos C, Stefanakis E, Pantalos N, Lockwood F (1996) A GIS-based forest fire management information system. EARSeL J 4:68–75

    Google Scholar 

  • Mandel J, Beezley JD, Kochanski AK (2011) Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3. Geosci Model Dev 4:497–545. https://doi.org/10.5194/gmdd-4-497-2011

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc 13:245–259

    Google Scholar 

  • Marçal A, Borges J, Gomes J, Pinto Da Costa J (2005) Land cover update by supervised classification of segmented ASTER images. Int J Remote Sens 26:1347–1362

    Article  Google Scholar 

  • Morvan D, Dupuy J (2001) Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust Flame 127:1981–1994

    Article  Google Scholar 

  • Muzy A, Nutaro JJ, Zeigler BP, Coquillard P (2008) Modeling and simulation of fire spreading through the activity tracking paradigm. Ecol Model 219:212–225. https://doi.org/10.1016/j.ecolmodel.2008.08.017

    Article  Google Scholar 

  • Nolan RH et al (2020) Linking forest flammability and plant vulnerability to drought. Forests. https://doi.org/10.3390/f11070779

    Article  Google Scholar 

  • Núñez-Regueira L, Añón JAR, Castiñeiras JP (1996) Calorific values and flammability of forest species in Galicia. Coastal and hillside zones. Bioresour Technol 57:283–289. https://doi.org/10.1016/S0960-8524(96)00083-1

    Article  Google Scholar 

  • Oshiro TM, Perez PS, Baranauskas JA (2012) How many trees in a random forest? In: Perner P (ed) Machine learning and data mining in pattern recognition. Springer, pp 154–168

    Chapter  Google Scholar 

  • Palacios-Orueta A, Chuvieco E, Parra A, Carmona-Moreno C (2005) Biomass burning emissions: a review of models using remote-sensing data. Environ Monit Assess 104:189–209. https://doi.org/10.1007/s10661-005-1611-y

    Article  Google Scholar 

  • Peng G-x, Li J, Chen Y-h, Norizan A-p (2007) A forest fire risk assessment using ASTER images in Peninsular Malaysia. J China Univ Min Technol 17:232–237. https://doi.org/10.1016/S1006-1266(07)60078-9

    Article  Google Scholar 

  • Perry GLW (1998) Current approaches to modelling the spread of wildland fire: a review. Prog Phys Geogr 22:222–245. https://doi.org/10.1177/030913339802200204

    Article  Google Scholar 

  • Perry GLW, Sparrow AD, Owens IF (1999) A GIS-supported model for the simulation of the spatial structure of wildland fire, Cass Basin, New Zealand. J Appl Ecol 36:502–518. https://doi.org/10.1046/j.1365-2664.1999.00416.x

    Article  Google Scholar 

  • Press SJ, Wilson S (1978) Choosing between Logistic Regression and Discriminant Analysis. J Am Stat Assoc 73:699–705. https://doi.org/10.1080/01621459.1978.10480080

    Article  Google Scholar 

  • Qi Z, Morgan JA, McMaster GS, Ahuja LR, Derner JD (2015) Simulating carbon dioxide effects on range plant growth and water use with GPFARM-range model rangeland. Ecol Manag 68:423–431. https://doi.org/10.1016/j.rama.2015.07.007

    Article  Google Scholar 

  • Qin X, Yan H, Zhan Z, Li Z (2013) Characterising vegetative biomass burning in China using MODIS data. Int J Wildland Fire. https://doi.org/10.1071/WF12163

    Article  Google Scholar 

  • Ramezani E, Marvie Mohadjer MR, Knapp H-D, Ahmadi H, Joosten H (2008) The late-Holocene vegetation history of the Central Caspian (Hyrcanian) forests of northern Iran. The Holocene 18:307–321. https://doi.org/10.1177/0959683607086768

    Article  Google Scholar 

  • Rao CV (2005) Analysis of means—a review. J Qual Technol 37:308–315. https://doi.org/10.1080/00224065.2005.11980334

    Article  Google Scholar 

  • Richards JA (2012) Remote sensing digital image analysis: an introduction. Springer

    Google Scholar 

  • Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecol 23:341–354. https://doi.org/10.1007/s10980-008-9190-2

    Article  Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. U.S Department of Agriculture, Intermountain Forest and Range Experiment Station, Ogden, UT

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Seo HS (2010) Vulnerability of Pinus densiflora to forest fire based on ignition characteristics. J Ecol Field Biol 33:343–349

    Google Scholar 

  • Sinnott RO, Duan H, Sun Y (2016) Chapter 15—a case study in Big Data analytics: exploring Twitter sentiment analysis and the weather. In: Buyya R, Calheiros RN, Dastjerdi AV (eds) Big Data. Morgan Kaufmann, pp 357–388

    Chapter  Google Scholar 

  • Sobrino JA, El Kharraz J, Li ZL (2003) Surface temperature and water vapour retrieval from MODIS data. Int J Remote Sens 24:5161–5182. https://doi.org/10.1080/0143116031000102502

    Article  Google Scholar 

  • Stephenson A, Gilleland E (2005) Software for the analysis of extreme events: the current state and future directions. Extremes 8:87–109

    Article  Google Scholar 

  • Sullivan AL (2009) Wildland surface fire spread modelling, 19902007. 2: Empirical and quasi-empirical models. Int J Wildland Fire 18:369–386. https://doi.org/10.1071/WF06142

    Article  Google Scholar 

  • Susott RA (1984) Heat of preignition of three woody fuels used in wildfire modeling research, vol 342. USDA, Intermountain Forest and Range Experiment Station, Washington, USA

    Google Scholar 

  • Swingler K (1996) Applying neural networks: a practical guide. Morgan Kaufmann

    Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: 2011 IEEE international geoscience and remote sensing symposium (IGARSS), IEEE, pp 3657–3660

  • Tanpipat V, Honda K, Nuchaiya P (2009) MODIS hotspot validation over Thailand. Remote Sensing 1:1043–1054

    Article  Google Scholar 

  • Thonicke K, Spessa A, Prentice I, Harrison SP, Dong L, Carmona-Moreno C (2010) The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991

    Article  Google Scholar 

  • Tonooka H (2005) Atmospheric correction of MODIS thermal infrared bands by water vapor scaling method. Paper presented at the SPIE Bruges, Belgium

  • Turkmen N, Duzenli A (2011) Early post-fire changes of Pinus brutia forests (Amanos Mountains, Turkey). Acta Botanica Croatica 70:9–21

    Article  Google Scholar 

  • Twidwell D, Fuhlendorf SD, Taylor CA, Rogers WE (2013) Refining thresholds in coupled fire–vegetation models to improve management of encroaching woody plants in grasslands. J Appl Ecol 50:603–613. https://doi.org/10.1111/1365-2664.12063

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Donnegan J (2000) Climatic and human influences on fire regimes in ponderosa pine forests in the colorado front range. Ecol Appl 10:1178–1195. https://doi.org/10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2

    Article  Google Scholar 

  • Verbesselt J, Fleck S, Coppin P (2002) Estimation of fuel moisture content towards Fire Risk Assessment: a review. Paper presented at the forest fire research & wildland fire safety, Rotherdam, Netherlands

  • Vestfálová M, Šafařík P (2016) Dependence of the isobaric specific heat capacity of water vapor on the pressure and temperature. In: EFM15—Experimental Fluid Mechanics 2015 Czech Republic, 2016. EDP Sciences, p 02133

  • Wang S, Zhou Y, Wang L, Zhang P (2003) A research on fire automatic recognition using MODIS data. Paper presented at the geoscience and remote sensing symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International

  • Wiitala MR, Carlton DW (1994) Assessing long-term fire movement risk in wilderness fire management. Paper presented at the fire and forest meteorology, Jekyll Island, USA

  • Xu M, Wei C (2012) Remotely sensed image classification by complex network eigenvalue and connected degree. Comput Math Methods Med 2012:9. https://doi.org/10.1155/2012/632703

    Article  Google Scholar 

  • Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest Science 53:1–15

    Google Scholar 

  • Yebra M et al (2013) A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote Sens Environ 136:455–468. https://doi.org/10.1016/j.rse.2013.05.029

    Article  Google Scholar 

  • Yunhao C, Jing L, Guangxiong P (2007) Forest fire risk assessment combining remote sensing and meteorological information. N Z J Agric Res 50:1037–1044

    Article  Google Scholar 

  • Zhang X, Zwiers FW (2004) Comment on “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by Sheng Yue and Chun Yuan Wang. Water Resour Res. https://doi.org/10.1029/2003wr002073

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of Education, Malaysia via the Fundamental Research Grant (FRGS/1/2019/WAB05/UTM/02/3).We wish to thank the members of the Physical Geography Laboratory (PGL) of Hakim Sabzevari University (HSU) for their support in the process of modeling. In the case of ASTER and MODIS imagery data sets, the authors would like to thank the National Aeronautics and Space Administration (NASA). We are also thankful to the editor of this journal and the two anonymous reviewers during the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Devi Kanniah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adab, H., Kanniah, K.D. & Solaimani, K. Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran. Nat Hazards 108, 253–283 (2021). https://doi.org/10.1007/s11069-021-04678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04678-w

Keywords

Navigation