Skip to main content
Log in

Microstructural Investigation and High Temperature Mechanical Behavior of AXE622 Cast Mg Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructure and high temperature properties of the AXE622 Mg alloy were investigated after the conventional and semisolid casting processes. The tensile test was conducted at room temperature, and 473 K. Impression creep test was performed at a temperature range of 423–498 K under the stress range of 450–600 MPa. The microstructure of the conventional and semisolid alloys contains α-Mg dendrites, the eutectic phase, secondary phases including (Mg–Al)2Ca, eutectic Mg17Al12, and Al11RE3. During semisolid processing, coarse dendrites of the α-Mg became fine, globular, and Rosetta shape. The average length of the secondary phases in the semisolid alloy decreased from 4.21 to 2 μm and the average grain size of the α-Mg reduced from 113 to 96 μm. Semisolid processing caused a significant improvement in the tensile and creep resistance of the AXE622 Mg alloy. The stress exponent for creep was calculated in the range 5.6–7.7 for the conventional alloy and in the range 10.3–11 for the semisolid alloy. The activation energy for conventional and semisolid alloy was determined as 71.4 kJ/mol and 78.3 kJ/mol, respectively. It was concluded that the dominant creep mechanism in the conventional alloy was the grain boundary diffusion-controlled dislocation climb, while in the semisolid alloy was the power-law breakdown.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Mordike, T. Ebert, Mater. Sci. Eng. A 13, 302 (2001)

    Google Scholar 

  2. I. Moreno, T. Nandy, J. Jones, J. Allison, T. Pollock, Scripta Mater. 48, 1029–1034 (2003)

    Article  CAS  Google Scholar 

  3. B. Nami, H. Razavi, S. Mirdamadi, S. Shabestari, S. Miresmaeili, Metall. Mater. Trans. A 41, 1973–1982 (2010)

    Article  CAS  Google Scholar 

  4. D. Amberger, P. Eisenlohr, M. Göken, Mater. Sci. Eng. A 510, 398–402 (2009)

    Article  CAS  Google Scholar 

  5. C. Wang, A. Chen, L. Zhang, W. Liu, G. Wu, W. Ding, Mater. Design 84, 53–63 (2015)

    Article  CAS  Google Scholar 

  6. W. Blum, P. Zhang, B. Watzinger, B. Grossmann, H. Haldenwanger, Mater. Sci. Eng. A 319, 735–740 (2001)

    Article  Google Scholar 

  7. B. Kondori, R. Mahmudi, Mater. Sci. Eng. A 700, 438–447 (2017)

    Article  CAS  Google Scholar 

  8. X. Feng, M. Xuegang, S. Yangshan, J. Mater. Sci. 41, 4725–4731 (2006)

    Article  CAS  Google Scholar 

  9. B. Nami, S. Shabestari, H. Razavi, S. Mirdamadi, S. Miresmaeili, Mater. Sci. Eng. A 528, 1261–1267 (2011)

    Article  CAS  Google Scholar 

  10. J. Deng, Y. Lin, S.-S. Li, J. Chen, Y. Ding, Mater. Design 49, 209–219 (2013)

    Article  CAS  Google Scholar 

  11. A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Mater. Sci. Eng. A 674, 9–17 (2016)

    Article  CAS  Google Scholar 

  12. L. Shang, S. Yue, R. Verma, P. Krajewski, C. Galvani, E. Essadiqi, Mater. Sci. Eng. A 528, 3761–3770 (2011)

    Article  CAS  Google Scholar 

  13. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. 26, 409–430 (2020)

    Article  CAS  Google Scholar 

  14. R.S. Rudi, S. Kamado, N. Ikeya, T. Araki, Y. Kojima, Mater. Sci. Forum 7, 79–86 (2016)

    Google Scholar 

  15. S.-M. Zhu, J. Nie, B. Mordike, Metall. Mater. Trans. A 37, 1221–1229 (2006)

    Article  Google Scholar 

  16. X.C. Luo, D.T. Zhang, G.H. Cao, C. Qiu, D.L. Chen, Mater. Sci. Eng. A 759, 234–240 (2019)

    Article  CAS  Google Scholar 

  17. T. Campanella, C. Charbon, M. Rappaz, Metall. Mater. Trans. A 35, 3201–3210 (2004)

    Article  Google Scholar 

  18. S.F. Liu, L.Y. Liu, L.G. Kang, J. Alloy. Compd. 450, 546–550 (2008)

    Article  CAS  Google Scholar 

  19. H. Han, S. Liu, L. Kang, L. Liu, Journal of Wuhan University of Technology-Mater. Sci. Ed. 23, 194–197 (2008)

    CAS  Google Scholar 

  20. B. Kondori, R. Mahmudi, Metall. Mater. Trans. A 40, 2007–2015 (2009)

    Article  CAS  Google Scholar 

  21. S. Liang, R. Chen, J. Blandin, M. Suery, E. Han, Mater. Sci. Eng. A 480, 365–372 (2008)

    Article  CAS  Google Scholar 

  22. B. Nami, S.M. Miresmaeili, F. Jamshidi, I. Khoubrou, T. Nonferr. Metal. Soc. 29, 2056–2065 (2019)

    Article  CAS  Google Scholar 

  23. S.H. Allameh, M. Emamy, J. Mater. Eng. Perform. 26, 2151–2161 (2017)

    Article  CAS  Google Scholar 

  24. K. Deng, K. Wu, Y. Wu, K. Nie, M. Zheng, J. Alloy. Compd. 504, 542–547 (2010)

    Article  CAS  Google Scholar 

  25. M.K. Aghayani, B. Niroumand, J. Alloy. Compd. 509, 114–122 (2011)

    Article  CAS  Google Scholar 

  26. H.L. Cox, Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  27. V.C. Nardone, K.M. Prewo, Scripta Metall. 20, 43–48 (1986)

    Article  CAS  Google Scholar 

  28. H. Sekine, R. Chent, Composites 26, 183–188 (1995)

    Article  CAS  Google Scholar 

  29. D. Hull, D.J. Bacon, Introduction to Dislocations (Fifth Edition), (Butterworth-Heinemann, Oxford, 2011), pp. 21–41

  30. B. Nami, H. Razavi, S. Miresmaeili, S. Mirdamadi, S. Shabestari, Scripta Mater. 65, 221–224 (2011)

    Article  CAS  Google Scholar 

  31. S. Rashno, B. Nami, S. Miresmaeili, Mater. Design 60, 289–294 (2014)

    Article  CAS  Google Scholar 

  32. I. Khoubrou, B. Nami, S.M. Miresmaeili, Met. Mater. Int. 26, 196–204 (2020)

    Article  CAS  Google Scholar 

  33. H. Khalilpour, S.M. Miresmaeili, A. Baghani, Mater. Sci. Eng. A 652, 365–369 (2016)

    Article  CAS  Google Scholar 

  34. R. Mahmudi, S. Moeendarbari, Mater. Sci. Eng. A 566, 30–39 (2013)

    Article  CAS  Google Scholar 

  35. W. Blum, Y.J. Li, X.H. Zeng, P. Zhang, B. von Großmann, C. Haberling, Metall. Mater. Trans. A 36, 1721–1728 (2005)

    Article  Google Scholar 

  36. Y. Terada, R. Sota, N. Ishimatsu, T. Sato, K. Ohori, Metall. Mater. Trans. A 35, 3029–3032 (2004)

    Article  Google Scholar 

  37. R. Gupta, B. Daniel, Mater. Sci. Eng. A 733, 257–266 (2018)

    Article  CAS  Google Scholar 

  38. ​H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford, 1982)

  39. B. Nami, S. Rashno, S. Miresmaeili, J. Alloy. Compd. 639, 308–314 (2015)

    Article  CAS  Google Scholar 

  40. F. Kabirian, R. Mahmudi, Metall. Mater. Trans. A 40, 116 (2009)

    Article  CAS  Google Scholar 

  41. A. Geranmayeh, R. Mahmudi, Mater. Chem. Phys. 139, 79–86 (2013)

    Article  CAS  Google Scholar 

  42. Y. Huang, T.G. Langdon, Jom 55, 15–20 (2003)

    Article  Google Scholar 

  43. C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, S. Jadhav, J. Mater. Sci. 42, 5182–5187 (2007)

    Article  CAS  Google Scholar 

  44. S. Chu, J. Li, J. Mater. Sci. 12, 2200–2208 (1977)

    Article  CAS  Google Scholar 

  45. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 407, 53–61 (2005)

    Article  CAS  Google Scholar 

  46. S. Robinson, O. Sherby, Acta Metall. 17, 109–125 (1969)

    Article  CAS  Google Scholar 

  47. K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 403, 276–280 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by Shahid Chamran University of Ahvaz (Ahvaz, Iran) through Grant No. SCU.EM98.788 is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Sadrossadat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhar, A.H., Sadrossadat, S.M. & Reihanian, M. Microstructural Investigation and High Temperature Mechanical Behavior of AXE622 Cast Mg Alloy. Met. Mater. Int. 28, 1062–1074 (2022). https://doi.org/10.1007/s12540-021-00984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00984-x

Keyword

Navigation