Skip to main content
Log in

Effects of aluminum content on the energy output characteristics of CL-20-based aluminized explosives in a closed vessel

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, a series of experiments were performed to study the energy output characteristics of CL-20-based aluminized explosives in an explosion vessel. The influences of different aluminum mass contents on the shock wave pressure and the explosion power were systematically investigated. The results showed that the peak overpressure and the positive impulse of the initial shock wave decreased with the aluminum content increased from 10 to 30%. On the contrary, the quasi-static pressure increased. The deformation and damage degree of sealing steel plates of the explosion vessel decreased as the aluminum content increased. The analysis indicated that the maximum residual deflection of the steel plates mainly represented the energy of the initial shock wave. The explosion power of the CL-20-based aluminized explosives decreased with the increase in aluminum content, and this trend was more remarkable at a large charge mass. The contrast test with LiF showed that the energy released from the combustion of aluminum can improve the positive impulse of the initial shock wave and play a role in the deformation of steel plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Trzciński, W.A., Cudziło, S., Paszula, J.: Studies of free field and confined explosions of aluminum enriched RDX compositions. Propellants Explos. Pyrotech. 32(6), 502–506 (2007). https://doi.org/10.1002/prep.200700202

    Article  Google Scholar 

  2. Simpson, R.L., Urtiew, P.A., Ornellas, D.L., Moody, G.L., Scribner, K.J., Hoffman, D.M.: CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos. Pyrotech. 22, 249–255 (1997). https://doi.org/10.1002/prep.19970220502

    Article  Google Scholar 

  3. Sider, A.K., Sikder, N., Gandhe, B.R.: Hexanitrohexaazaisowurtaitane or CL-20 in India: synthesis and characterization. Defense Sci. J. 52(2), 135–146 (2002). https://doi.org/10.14429/dsj.52.2158

    Article  Google Scholar 

  4. Wang, F.P., Chen, L., Geng, D.S.: Effect of density on the thermal decomposition mechanism of epsilon-CL-20: a ReaxFF reactive molecular dynamics simulation study. Phys. Chem. Chem. Phys. 20(35), 22600–22609 (2018). https://doi.org/10.1039/c8cp03010c

    Article  Google Scholar 

  5. Mao, X.X., Zhu, C.G., Li, Y.C., Li, Y.F., Jiang, L.F., Wang, X.M.: The effect of micro-sized aluminum powder on thermal decomposition of HNIW (CL-20). Adv. Mater. Sci. Eng. 2019, 6487060 (2019). https://doi.org/10.1155/2019/6487060

    Article  Google Scholar 

  6. Zhu, Y.F., Luo, J., Lu, Y.W.: Emulsion synthesis of CL-20/DNA composite with excellent superfine spherical improved sensitivity performance via a combined ultrasonic microwave irradiation approach. J. Mater. Sci. 53, 14231–14240 (2018). https://doi.org/10.1007/s10853-018-2644-2

    Article  Google Scholar 

  7. Liu, D.Y., Chen, L., Wang, C., Wu, J.Y.: Detonation reaction characteristics for CL-20 and CL-20-based aluminized mixed explosives. Cent. Eur. J. Energ. Mater. 14, 573–588 (2017). https://doi.org/10.22211/cejem/75114

    Article  Google Scholar 

  8. Liu, D.Y., Chen, L., Wang, C., Wu, J.Y.: Aluminum acceleration and reaction characteristics for aluminized CL-20-based mixed explosives. Propellants Explos. Pyrotech. 43(6), 543–551 (2018). https://doi.org/10.1002/prep.201700266

    Article  Google Scholar 

  9. Jiao, Q.J., Wang, Q.S., Nie, J.X., Guo, X.Y., Zhang, W., Fan, W.Q.: The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives. AIP Adv. 8(3), 035013 (2018). https://doi.org/10.1063/1.5023262

    Article  Google Scholar 

  10. Mao, X.X., Jiang, L.F., Zhu, C.G., Wang, X.M.: Effects of aluminum powder on ignition performance of RDX, HMX, and CL-20 explosives. Adv. Mater. Sci. Eng. 2018(4), 5913216 (2018). https://doi.org/10.1155/2018/5913216

    Article  Google Scholar 

  11. Anderson Jr., C.E., Baker, W.E., Wauters, D.K., Morris, B.L.: Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures. Int. J. Mech. Sci. 25(6), 455–464 (1983). https://doi.org/10.1016/0020-7403(83)90059-0

    Article  Google Scholar 

  12. Dong, Q., Li, Q.M., Zheng, J.Y.: Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels. Int. J. Impact Eng 37(4), 349–358 (2010). https://doi.org/10.1016/j.ijimpeng.2009.10.004

    Article  Google Scholar 

  13. Hu, Y., Wu, C.Q., Lukaszewicz, M., Dragos, J.: Characteristics of confined blast loading in unvented structures. Int. J. Protect. Struct. 2(1), 21–43 (2011). https://doi.org/10.1260/2041-4196.2.1.21

    Article  Google Scholar 

  14. Dragos, J., Wu, C.Q., Oehlers, D.J.: Simplification of fully confined blasts for structural response analysis. Eng. Struct. 56, 312–326 (2013). https://doi.org/10.1016/j.engstruct.2013.05.018

    Article  Google Scholar 

  15. Geretto, C., Chung, K.Y., Nurick, G.N.: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading. Int. J. Impact Eng 79, 32–44 (2015). https://doi.org/10.1016/j.ijimpeng.2014.08.002

    Article  Google Scholar 

  16. Jones, N.: Structural Impact. Cambridge University Press, Cambridge (1989). https://doi.org/10.1017/CBO9780511624285

    Book  Google Scholar 

  17. Nurick, G.N., Gelman, M.E., Marshall, N.S.: Tearing of blast loaded plates with clamped boundary conditions. Int. J. Impact Eng 18(7–8), 803–827 (1996). https://doi.org/10.1016/S0734-743X(96)00026-7

    Article  Google Scholar 

  18. Remennikov, A., Ngo, T., Mohotti, D., Uy, B., Netherton, M.: Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges. Int. J. Impact Eng 101, 78–89 (2017). https://doi.org/10.1016/j.ijimpeng.2016.11.013

    Article  Google Scholar 

  19. Yao, S.J., Zhang, D., Lu, F.Y.: Dimensionless number for dynamic response analysis of box-shaped structures under internal blast loading. Int. J. Impact Eng. 98, 13–18 (2016). https://doi.org/10.1016/j.ijimpeng.2016.07.005

    Article  Google Scholar 

  20. Manner, V.W., Pemberton, S.J., Gunderson, J.A.: The role of aluminum in the detonation and post detonation expansion of selected cast HMX-Based explosives. Propellants Explos. Pyrotech. 37, 198–206 (2012). https://doi.org/10.1002/prep.201100138

    Article  Google Scholar 

  21. Li, X., Pei, H., Zhang, X., Zheng, X.: Effect of aluminum particle size on the performance of aluminized explosives. Propellants Explos. Pyrotech. 45(5), 807–813 (2020). https://doi.org/10.1002/prep.201900308

    Article  Google Scholar 

  22. Duan, X.Y., Guo, X.Y., Jiao, Q.J., Zhang, J.Y., Zhang, Q.M.: Effects of Al/O on pressure properties of confined explosion from aluminized explosives. Defence Technol. 13(6), 428–433 (2017). https://doi.org/10.1016/j.dt.2017.05.018

    Article  Google Scholar 

  23. Cook, M.A., Filler, A.S., Keyes, R.T., Partridge, W.S.: Aluminized explosives. J. Phys. Chem. 61(2), 189–196 (1957). https://doi.org/10.1021/j150548a013

    Article  Google Scholar 

  24. Bjarnholt G.: Effects of aluminum and lithium fluoride admixtures on metal acceleration ability of Comp B. 6th International Symposium on Detonation, pp. 510–520. Office of Naval Research (1976).

  25. Carlson R.W.: Confinement of an explosion by a steel vessel. Los Alamos Scientific Laboratory, New Mexico, LA-390(R) (1945).

  26. Weibull, H.R.W.: Pressures recorded in partially closed chambers at explosion of TNT charges. Ann. N. Y. Acad. Sci. 152(1), 357–361 (1968). https://doi.org/10.1111/j.1749-6632.1968.tb11987.x

    Article  Google Scholar 

  27. Feldgun, V.R., Karinski, Y.S., Edri, I., Yankelevsky, D.Z.: Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures. Int. J. Impact Eng 90, 46–60 (2016). https://doi.org/10.1016/j.ijimpeng.2015.12.001

    Article  Google Scholar 

Download references

Acknowledgments

The reported research was supported by the National Natural Science Foundation of China (No. 11672042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mao.

Additional information

Communicated by D. Frost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Lu, G., Mao, L. et al. Effects of aluminum content on the energy output characteristics of CL-20-based aluminized explosives in a closed vessel. Shock Waves 31, 141–151 (2021). https://doi.org/10.1007/s00193-021-01001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01001-1

Keywords

Navigation