Skip to main content
Log in

Numerical Simulation of Nanofluid Flow in a Channel Using Eulerian–Eulerian Two-Phase Model

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this article, laminar forced convection heat transfer in two-dimensional channel is investigated numerically. This investigation provides significant insight into recognizing the key parameters affecting the properties of the second law of thermodynamics, Darcy friction factor, performance evaluation criterion (PEC) and heat transfer. Because changes in the volume fraction of nanoparticles are significant, the Eulerian–Eulerian two-phase model is considered to simulate nanofluid flow. To enhance heat transfer, single jet and twin jets of ethylene glycol–SiO2 nanofluid are used. The pure ethylene glycol flows from the channel inlet and mixes with the flow of single jet or twin jets. The effects of the number of jet injection (single or twin), the concentration of nanoparticles and inlet velocity of jets are assessed using computational fluid dynamics. Jet injection with constant heat flux can lead to decrease in the general thermal and increase in the frictional entropy generation rates. With jet injection into the ethylene glycol flow, Nusselt number, Darcy friction factor and PEC increase. The nanoparticles’ addition to ethylene glycol increases the heat transfer from the target surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.X. Li, U. Khaled, A.A.A.A. Al-Rashed, M. Goodarzi, M.M. Sarafraz, R. Meer, Int. J. Heat Mass Transf. 149, 119124 (2020)

    Article  Google Scholar 

  2. C.J. Ho, Y.J. Hsieh, S. Rashidi, Y. Orooji, W.M. Yan, Int. Commun. Heat Mass Transf. 112, 104477 (2020)

    Article  Google Scholar 

  3. A. Rezaei Gorjaei, F. Joda, R. Haghighi Khoshkhoo, J. Therm. Anal Calorim. 139, 2023–2034 (2019)

    Article  Google Scholar 

  4. H. Hong, J. Wensel, F. Liang, W.E. Billups, W. Roy, Int. J. Thermophys. 21, 234 (2012)

    Article  Google Scholar 

  5. A. RezaeiGorjaei, M. Soltani, M. Bahiraei, F.M. Kashkooli, Int. J. Mech Sci. 147, 396–404 (2018)

    Article  Google Scholar 

  6. Y. Vermahmoudi, S.M. Peyghambarzadeh, M. Naraki, S.H. Hashemabadi, J. Thermophys Heat Transf. 27, 320–325 (2013)

    Article  Google Scholar 

  7. M. Bahiraei, A. Rezaei Gorjaei, A. Shahidian, J. Mol Liq. 248, 36–47 (2017)

    Article  Google Scholar 

  8. F. Farzin, S. Zeinali Heris, S. Rahimi, J. Thermophys. Heat Transf. 27, 127–133 (2013)

    Article  Google Scholar 

  9. V. Bianco, O. Manca, S. Nardini, Energy Convers. Manag. 77, 306–314 (2014)

    Article  Google Scholar 

  10. A. Rezaei Gorjaei, A. Shahidian, J. Therm. Anal Calorim. 137, 1059–1068 (2019)

    Article  Google Scholar 

  11. M.S. Abhijith, K. Venkatasubbaiah, Therm. Sci. Eng. Prog. 19, 100585 (2020)

    Article  Google Scholar 

  12. M.M. Rashidi, S. Abelman, N. Freidoonimehr, Int. J. Heat Mass Transf. 62, 515–525 (2013)

    Article  Google Scholar 

  13. M.M. Rashidi, S. Mahmud, N. Freidoonimehr, B. Rostami, Int. J. energy. 16, 481–503 (2015)

    Google Scholar 

  14. M.M. Rashidi, M. Ali, N. Freidoonimehr, F. Nazari, Energy 55, 497–510 (2013)

    Article  Google Scholar 

  15. A. Rezaei Gorjaei, A. Shahidian, Heat Transf. Eng. 137, 1059–1068 (2019)

    Google Scholar 

  16. A.B. Etemoglu, M.K. Isman, M. Can, Heat Mass Transf. 46, 1395–1410 (2010)

    Article  ADS  Google Scholar 

  17. A. Radhouane, N.M. Said, H. Mhiri, Ph. Bournot, G. Palec, Environ. Fluid Mech. 16, 45–67 (2016)

    Article  Google Scholar 

  18. E.J. Gutmark, I.M. Ibrahim, S. Murugappan, Exp Fluids 50, 653–663 (2011)

    Article  Google Scholar 

  19. M. Wae-hayee, P. Tekasakul, S. Eiamsa-ard, C. Nuntadusit, J. Mech Sci Technol. 28, 2909–2917 (2014)

    Article  Google Scholar 

  20. J.P. Bouchez, R.J. Goldstein, Int. J. Heat Mass Transf. 18, 719–730 (1975)

    Article  ADS  Google Scholar 

  21. V.S. Naik-Nimbalkar, A.D. Suryawanshi, A.W. Patwardhan, I. Banerjee, G. Padmakumar, G. Vaidyanathan, Chem. Eng. Sci. 66, 2616–2626 (2011)

    Article  Google Scholar 

  22. M. Bahiraei, N. Mazaheri, Y. Hosseini, H. Moayedi, Int. J. Heat Mass Transf. 145, 118612 (2019)

    Article  Google Scholar 

  23. A. Shahsavar, R. Ansarian, M. Bahiraei, Powder Technol. 340, 370–379 (2018)

    Article  Google Scholar 

  24. A. Bhattad, J. Sarkar, P. Ghosh, Int. Commun. Heat Mass Transf. 91, 262–273 (2018)

    Article  Google Scholar 

  25. H. Aminfar, M. Mohammadpourfard, Y. Narmani Kahnamouei, J. Magn. Magn. Mater. 323, 1963–1972 (2011)

    Article  ADS  Google Scholar 

  26. A.I. Alsabery, M.A. Ismael, A.JCh.I. Hashim, Int. J. Heat Mass Transf. 119, 939–961 (2018)

    Article  Google Scholar 

  27. M. Amani, P. Amani, A. Kasaeian, O. Mahian, W.M. Yan, Chem. Eng Sci. 167, 135–144 (2017)

    Article  Google Scholar 

  28. R. Lotfi, Y. Saboohi, A.M. Rashidi, Int. Commun. Heat Mass Transf. 37, 74–78 (2010)

    Article  Google Scholar 

  29. M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darbuber, J. Harting, Appl. Therm. Eng. 36, 260–268 (2012)

    Article  Google Scholar 

  30. M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Int. J. Heat Fluid Flow. 32, 107–116 (2011)

    Article  Google Scholar 

  31. I. Behroyan, Sh.M. Vanaki, P. Ganesan, R. Saidur, Int. Commun. Heat Mass Transf. 70, 27–37 (2016)

    Article  Google Scholar 

  32. F. Selimefendigil, H.F. Oztop, A.J. Chamkha, J. Therm. Anal. Calorim. 135, 11–23 (2019)

    Google Scholar 

  33. B. Hoseinpour, H.R. Ashorynejad, K. Javaherdeh, J. Thermophys. Heat Transf. 31, 41635–43756 (2016)

    Google Scholar 

  34. S.A.M. Mehryan, M. Izadi, A.J. Chamkha, M.A. Sheremet, J. Mol. Liq. 263, 10–25 (2018)

    Article  Google Scholar 

  35. A. Falahat, A. Vosough, J. Thermophys. Heat Transf. 26, 1–6 (2013)

    Google Scholar 

  36. K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, ICMER 257, 012067 (2017)

    Google Scholar 

  37. Y. Sheikhnejad, R. Hosseini, M. Saffar Avval, J. Magn. Magn Mater. 424, 16–25 (2017)

    Article  ADS  Google Scholar 

  38. R.L. Webb, Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat. Mass Transf. 24, 715–726 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Rezaei Gorjaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Gorjaei, A., Rahmani, R. Numerical Simulation of Nanofluid Flow in a Channel Using Eulerian–Eulerian Two-Phase Model. Int J Thermophys 42, 68 (2021). https://doi.org/10.1007/s10765-021-02821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02821-0

Keywords

Navigation