Skip to main content
Log in

Orthogonality preserving property for pairs of operators on Hilbert \(C^*\)-modules

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We investigate the orthogonality preserving property for pairs of operators on inner product \(C^*\)-modules. Employing the fact that the \(C^*\)-valued inner product structure of a Hilbert \(C^*\)-module is determined essentially by the module structure and by the orthogonality structure, pairs of linear and local orthogonality-preserving operators are investigated, not a priori bounded. We obtain that if \({\mathscr {A}}\) is a \(C^{*}\)-algebra and \(T, S:{\mathscr {E}}\rightarrow {\mathscr {F}}\) are two bounded \({{\mathscr {A}}}\)-linear operators between full Hilbert \({\mathscr {A}}\)-modules, then \(\langle x, y\rangle = 0\) implies \(\langle T(x), S(y)\rangle = 0\) for all \(x, y\in {\mathscr {E}}\) if and only if there exists an element \(\gamma \) of the center \(Z(M({{\mathscr {A}}}))\) of the multiplier algebra \(M({{\mathscr {A}}})\) of \({{\mathscr {A}}}\) such that \(\langle T(x), S(y)\rangle = \gamma \langle x, y\rangle \) for all \(x, y\in {\mathscr {E}}\). Varying the conditions on the operators T and S we obtain further affirmative results for local operators and for pairs of a bounded and an unbounded \({{\mathscr {A}}}\)-linear operator with bounded inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, C.A.: The general Stone–Weierstrass problem. J. Funct. Anal. 4, 277–294 (1969)

    Article  MathSciNet  Google Scholar 

  2. Arambašić, L., Rajić, R.: A strong version of the Birkhoff–James orthogonality in Hilbert \(C^*\)-modules. Ann. Funct. Anal. 5(1), 109–120 (2014)

    Article  MathSciNet  Google Scholar 

  3. Arambašić, L., Rajić, R.: On three concepts of orthogonality in Hilbert C*-modules. Linear Multilinear Algebra 63(7), 1485–1500 (2015)

    Article  MathSciNet  Google Scholar 

  4. Asadi, M.B., Olyaninezhad, F.: Orthogonality preserving pairs of operators on Hilbert \(C_0(Z)\)-modules. Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2020.1825610

    Article  Google Scholar 

  5. Bakić, D., Guljaš, B.: Hilbert \(C^*\)-modules over \(C^*\)-algebras of compact operators. Acta Sci. Math. (Szeged) 68, 249–269 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Brown, L.G., Pedersen, G.K.: \(C^*\)-algebras of real rank zero. J. Funct. Anal. 99, 131–149 (1991)

    Article  MathSciNet  Google Scholar 

  7. Brown, L.G.: Close hereditary \(C^*\)-subalgebras and the structure of quasi-multipliers, MSRI preprint # 11211–85, Purdue University, West Lafayette, USA, 1985. Proc. R. Soc. Edinb. Sect. A Math. 147(2), 263–292 (2017)

    Article  Google Scholar 

  8. Chevalier, G.: Wigner’s theorem and its generalizations. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 429–475. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  9. Chmieliński, J.: Linear mappings approximately preserving orthogonality. J. Math. Anal. Appl. 304, 158–169 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chmieliński, J.: Orthogonality equation with two unknown functions. Aequationes Math. 90, 11–23 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chmieliński, J., Łukasik, R., Wójcik, P.: On the stability of the orthogonality equation and the orthogonality-preserving property with two unknown functions. Banach J. Math. Anal. 10(4), 828–847 (2016)

    Article  MathSciNet  Google Scholar 

  12. Frank, M.: Self-duality and \(C^*\)-reflexivity of Hilbert \(C^*\)-modules. Z. Anal. Anwend. 9, 165–176 (1990)

    Article  Google Scholar 

  13. Frank, M.: Geometrical aspects of Hilbert \(C^*\)-modules. Positivity 3(3), 215–243 (1999)

    Article  MathSciNet  Google Scholar 

  14. Frank, M., Mishchenko, A.S., Pavlov, A.A.: Orthogonality-preserving, \(C^*\)-conformal and conformal module mappings on Hilbert \(C^*\)-modules. J. Funct. Anal. 260, 327–339 (2011)

    Article  MathSciNet  Google Scholar 

  15. Ilišević, D., Turnšek, A.: Approximately orthogonality preserving mappings on \(C^*\)-modules. J. Math. Anal. Appl. 341, 298–308 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ilišević, D., Turnšek, A., Yang, D.: Orthogonally additive mappings on Hilbert modules. Studia Math. 221, 209–229 (2014)

    Article  MathSciNet  Google Scholar 

  17. Leung, C.-W., Ng, C.-K., Wong, N.-C.: Linear orthogonality preservers of Hilbert \(C^*\)-modules over \(C^*\)-algebras with real rank zero. Proc. Am. Math. Soc. 140(9), 3151–3160 (2012)

    Article  MathSciNet  Google Scholar 

  18. Leung, C.-W., Ng, C.-K., Wong, N.-C.: Automatic continuity and \(C_0(\Omega )\)-linearity of linear maps between \(C_0(\Omega )\)-modules. J. Oper. Theory 67(1), 3–20 (2012)

    MATH  Google Scholar 

  19. Li, H.: A Hilbert \(C^*\)-module admitting no frames. Bull. Lond. Math. Soc. 42, 388–394 (2010)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Tan, D.: Wigner’s theorem on the Tsirelson space \(T\). Ann. Funct. Anal. 10(4), 515–524 (2019)

    Article  MathSciNet  Google Scholar 

  21. Łukasik, R.: A note on the orthogonality equation with two functions. Aequationes Math. 90(5), 961–965 (2016)

    Article  MathSciNet  Google Scholar 

  22. Łukasik, R., Wójcik, P.: Decomposition of two functions in the orthogonality equation. Aequationes Math. 90(3), 495–499 (2016)

    Article  MathSciNet  Google Scholar 

  23. Łukasik, R., Wójcik, P.: Functions preserving the biadditivity. Results Math. 75, 82 (2020)

    Article  MathSciNet  Google Scholar 

  24. Mal, A., Sain, D., Paul, K.: On some geometric properties of operator spaces. Banach J. Math. Anal. 13(1), 174–191 (2019)

    Article  MathSciNet  Google Scholar 

  25. Manuilov, V.M., Troitsky, E.V.: Hilbert \(C^*\)-modules. In: Translations of Mathematical Monographs, vol. 226, American Mathematical Society, Providence (2005)

  26. Molnár, L.: Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s theorem. J. Funct. Anal. 194(2), 248–262 (2002)

    Article  MathSciNet  Google Scholar 

  27. Molnár, L.: Generalizations of Wigner’s unitary-antiunitary theorem for indefinite inner product spaces. Commun. Math. Phys. 201, 785–791 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Moslehian, M.S., Zamani, A.: Mappings preserving approximate orthogonality in Hilbert \(C^*\)-modules. Math Scand. 122, 257–276 (2018)

    Article  MathSciNet  Google Scholar 

  29. Paul, K., Sain, D., Mal, A., Mandal, K.: Orthogonality of bounded linear operators on complex Banach spaces. Adv. Oper. Theory 3(3), 699–709 (2018)

    Article  MathSciNet  Google Scholar 

  30. Paschke, W.L.: Inner product modules over \(B^*\)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Pedersen, G.K.: \(C^*\)-algebras and Their Automorphism Groups. Academic Press, London (1979)

    MATH  Google Scholar 

  32. Rodman, L., Šemrl, P.: Orthogonality preserving bijective maps on finite dimensional projective spaces over division rings. Linear Multilinear Algebra 56(6), 647–664 (2008)

    Article  MathSciNet  Google Scholar 

  33. Sadr, M.M.: Decomposition of functions between Banach spaces in the orthogonality equation. Aequationes Math. 91(4), 739–743 (2017)

    Article  MathSciNet  Google Scholar 

  34. Takesaki, M.: Theory of Operator Algebras I, Encyclopedia Mathematics Sciences, vil. 124, Springer, 1979/2002

  35. Turnšek, A.: On mappings approximately preserving orthogonality. J. Math. Anal. Appl. 336(1), 625–631 (2007)

    Article  MathSciNet  Google Scholar 

  36. Uhlhorn, U.: Representation of symmetry transformations in quantum mechanics. Ark. Fysik 23, 307–340 (1962)

    MATH  Google Scholar 

  37. Wigner, E.: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig (1931)

    Book  Google Scholar 

  38. Wójcik, P.: On certain basis connected with operator and its applications. J. Math. Anal. Appl. 423(2), 1320–1329 (2015)

    Article  MathSciNet  Google Scholar 

  39. Wójcik, P.: On a functional equation characterizing linear similarities. Aequationes Math. 93(3), 557–561 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zamani, A., Moslehian, M.S., Frank, M.: Angle preserving mappings. Z. Anal. Anwend. 34, 485–500 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their careful reading of the manuscript and for their useful comments. The second author (corresponding author) was supported by a grant from Ferdowsi University of Mashhad No. 2/53798.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sal Moslehian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, M., Moslehian, M.S. & Zamani, A. Orthogonality preserving property for pairs of operators on Hilbert \(C^*\)-modules. Aequat. Math. 95, 867–887 (2021). https://doi.org/10.1007/s00010-021-00790-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-021-00790-1

Keywords

Mathematics Subject Classification

Navigation