Skip to main content
Log in

Time domain spectral element-based wave finite element method for periodic structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, a time domain spectral element-based wave finite element method is proposed to analyze periodic structures. Time domain spectral element-based formulation reduces the total degrees of freedom and also renders a diagonal mass matrix resulting in substantial reduction in computation time for the wave finite element method. The formulation is then considered to obtain the stop band characteristics for a periodic bar and a Timoshenko beam considering geometric as well as material periodicity. The impact of geometric parameters on the stop bands of 1-D structures is then investigated in detail. It is shown that the stop bands can be obtained in the frequency range of interest, and its width can be varied by tuning those geometric parameters. Also, the effect of material uncertainty is studied in detail on the stop band characteristics of periodic 1-D structures, and the same formulation is utilized for Monte Carlo simulations. Results show that randomness in density influences more the bandwidth of the stop bands than that of elastic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Mead, D.J.: Wave propagation and natural modes in periodic systems: I. Mono-coupled systems. J. Sound Vib. 40(1), 1–18 (1975)

    MATH  Google Scholar 

  2. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Courier Corporation, North Chelmsford (2003)

    MATH  Google Scholar 

  3. Lord Rayleigh, R.S.: On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Lond. Edinb. Dublin Philos. Mag. J. Sci. 24(147), 145–159 (1887)

  4. Kittel, C., McEuen, P.: Introduction to Solid State Physics, vol. 8. Wiley, New York (1996)

  5. Heckl, M.A.: Investigations on the vibrations of grillages and other simple beam structures. J. Acoust. Soc. Am. 36(7), 1335–1343 (1964)

    Google Scholar 

  6. Hodges, C.: Confinement of vibration by structural irregularity. J. Sound Vib. 82(3), 411–424 (1982)

    Google Scholar 

  7. Mead, D.J.: Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and without damping. J. Sound Vib. 40(1), 19–39 (1975)

    MATH  Google Scholar 

  8. Mead, D.: Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J. Sound Vib. 190(3), 495–524 (1996)

    Google Scholar 

  9. Lin, Y.K., McDaniel, T.: Dynamics of beam-type periodic structures. J. Eng. Ind. 91(4), 1133–1141 (1969)

    Google Scholar 

  10. Richoux, O., Maurel, A., Pagneux, V.: Disorder persistent transparency within the bandgap of a periodic array of acoustic Helmholtz resonators. J. Appl. Phys. 117(10), 104–902 (2015)

    Google Scholar 

  11. Junyi, L., Balint, D.: An inverse method to determine the dispersion curves of periodic structures based on wave superposition. J. Sound Vib. 350, 41–72 (2015)

    Google Scholar 

  12. Spadoni, A., Ruzzene, M., Cunefare, K.: Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. J. Intell. Mater. Syst. Struct. 20(8), 979–990 (2009)

    Google Scholar 

  13. Xiao, Y., Wen, J., Wang, G., Wen, X.: Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators. J. Vib. Acoust. 135(4), 041006 (2013)

    Google Scholar 

  14. Yu, D., Liu, Y., Zhao, H., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler–Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B 73(6), 064–301 (2006)

    Google Scholar 

  15. Han, L., Zhang, Y., Ni, Z.Q., Zhang, Z.M., Jiang, L.H.: A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams. Phys. B 407(23), 4579–4583 (2012)

    Google Scholar 

  16. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040–802 (2014)

    Google Scholar 

  17. Lee, U., Kim, J., Leung, A.Y.: Spectral element method in structural dynamics. Shock Vib. Dig. 32(6), 451–465 (2000)

    Google Scholar 

  18. Lee, U.: Vibration analysis of one-dimensional structures using the spectral transfer matrix method. Eng. Struct. 22(6), 681–690 (2000)

    Google Scholar 

  19. Mace, B.R., Duhamel, D., Brennan, M.J., Hinke, L.: Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117(5), 2835–2843 (2005)

    Google Scholar 

  20. Houillon, L., Ichchou, M., Jezequel, L.: Wave motion in thin-walled structures. J. Sound Vib. 281(3–5), 483–507 (2005)

    Google Scholar 

  21. Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294(1–2), 205–220 (2006)

    Google Scholar 

  22. Renno, J.M., Mace, B.R.: On the forced response of waveguides using the wave and finite element method. J. Sound Vib. 329(26), 5474–5488 (2010)

    Google Scholar 

  23. Mace, B.R., Manconi, E.: Modelling wave propagation in two-dimensional structures using finite element analysis. J. Sound Vib. 318(4–5), 884–902 (2008)

    Google Scholar 

  24. Mencik, J.M., Ichchou, M.: Wave finite elements in guided elastodynamics with internal fluid. Int. J. Solids Struct. 44(7–8), 2148–2167 (2007)

    MATH  Google Scholar 

  25. Waki, Y., Mace, B., Brennan, M.: Free and forced vibrations of a tyre using a wave/finite element approach. J. Sound Vib. 323(3–5), 737–756 (2009)

    Google Scholar 

  26. Kessentini, A., Taktak, M., Souf, M.B., Bareille, O., Ichchou, M., Haddar, M.: Computation of the scattering matrix of guided acoustical propagation by the wave finite element approach. Appl. Acoust. 108, 92–100 (2016)

    Google Scholar 

  27. Fan, Y., Collet, M., Ichchou, M., Li, L., Bareille, O., Dimitrijevic, Z.: Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach. Mech. Syst. Signal Process. 66, 137–158 (2016)

    Google Scholar 

  28. Fan, Y., Collet, M., Ichchou, M., Li, L., Bareille, O., Dimitrijevic, Z.: Enhanced wave and finite element method for wave propagation and forced response prediction in periodic piezoelectric structures. Chin. J. Aeronaut. 30(1), 75–87 (2017)

    Google Scholar 

  29. Mallouli, M., Souf, M.B., Bareille, O., Ichchou, M., Fakhfakh, T., Haddar, M.: Transient wave scattering and forced response analysis of damaged composite beams through a hybrid finite element-wave based method. Finite Elem. Anal. Des. 147, 1–9 (2018)

    Google Scholar 

  30. Ichchou, M., Akrout, S., Mencik, J.M.: Guided waves group and energy velocities via finite elements. J. Sound Vib. 305(4–5), 931–944 (2007)

    Google Scholar 

  31. Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using MATLAB. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  32. Budarapu, P.R., Zhuang, X., Rabczuk, T., Bordas, S.P.: Multiscale modeling of material failure: theory and computational methods. In: Advances in Applied Mechanics, vol. 52, pp. 1–103. Elsevier (2019)

  33. Nguyen, V.P., Stroeven, M., Sluys, L.J.: Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J. Multiscale Modell. 3(04), 229–270 (2011)

    MathSciNet  Google Scholar 

  34. Bernabeu, M.O., Bordas, R., Pathmanathan, P., Pitt-Francis, J., Cooper, J., Garny, A., Gavaghan, D.J., Rodriguez, B., Southern, J.A., Whiteley, J.P.: Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895), 1907–1930 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Talebi, H., Silani, M., Bordas, S.P., Kerfriden, P., Rabczuk, T.: A computational library for multiscale modeling of material failure. Comput. Mech. 53(5), 1047–1071 (2014)

    MathSciNet  Google Scholar 

  36. Zhong, W., Williams, F.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181(3), 485–501 (1995)

    Google Scholar 

  37. Mencik, J.M., Duhamel, D.: A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models. Finite Elem. Anal. Des. 101, 1–14 (2015)

    MathSciNet  Google Scholar 

  38. Patel, R.V.: On computing the eigenvalues of a symplectic pencil. Linear Algebra Appl. 188, 591–611 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Mencik, J.M.: A model reduction strategy for computing the forced response of elastic waveguides using the wave finite element method. Comput. Methods Appl. Mech. Eng. 229, 68–86 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Sharma, H., Mukherjee, S., Ganguli, R.: Uncertainty analysis of higher-order sandwich beam using a hybrid stochastic time-domain spectral element method. Int. J. Comput. Methods Eng. Sci. Mech. 21(5), 215–230 (2020)

    MathSciNet  Google Scholar 

  41. Sharma, H., Mukherjee, S., Ganguli, R.: Stochastic strain and stress computation of a higher-order sandwich beam using hybrid stochastic time domain spectral element method. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1778144

    Article  Google Scholar 

  42. Mukherjee, S., Sekhar, B.R., Gopalakrishnan, S., Ganguli, R.: Static and dynamic analysis of sandwich panel with spatially varying non-Gaussian properties. J. Sandw. Struct. Mater. 22(8), 2469–2504 (2020)

    Google Scholar 

  43. Ostachowicz, W., Kudela, P., Krawczuk, M., Zak, A.: Guided Waves in Structures for SHM: the Time-domain Spectral Element Method. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  44. Gopalakrishnan, S.: Wave Propagation in Materials and Structures. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  45. Sasikumar, P., Suresh, R., Gupta, S.: Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities. Acta Mech. 225(6), 1503–1522 (2014)

    MATH  Google Scholar 

  46. Mukherjee, S., Gopalakrishnan, S., Ganguli, R.: Stochastic time domain spectral element analysis of beam structures. Acta Mech. 230(5), 1487–1512 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Gopalakrishnan, S., Martin, M., Doyle, J.: A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J. Sound Vib. 158(1), 11–24 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvajit Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Gopalakrishnan, S. & Ganguli, R. Time domain spectral element-based wave finite element method for periodic structures. Acta Mech 232, 2269–2296 (2021). https://doi.org/10.1007/s00707-020-02917-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02917-y

Navigation