Skip to main content
Log in

Composition and co-occurrence patterns of Phragmites australis rhizosphere bacterial community

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

High oxygen levels and root exudates together provide a resource-enriched habitat for rhizosphere microbes that, in turn, foster plant growth and perform key ecological functions. Plant genotype is a main factor shaping rhizosphere bacterial communities; however, the influence of plant genotype on the rhizosphere bacterial community of aquatic macrophytes remains unknown. Here we collected samples of the rhizosphere and bulk sediments of two genotypes of the macrophyte Phragmites australis from the littoral areas of freshwater lakes in China. High-throughput sequencing of the 16S rRNA gene was used to characterize the rhizosphere bacterial community. We found that the rhizosphere recruited a distinct bacterial community relative to that of the bulk sediment. The rhizosphere microbial community was characterized by distinct community composition and core OTUs comprising a few dominant taxa involved in the regulation of plant fitness and nutrient cycling. These taxa included Arthrobacter, Pseudomonas, Trichococcus, and Ramlibacter. Network analysis showed distinct co-occurrence patterns and a genotype-specific preference for hub taxa within the rhizosphere bacterial communities of each genotype. Functional analysis revealed difference between the relative abundance of functional groups participating in C, N, and S cycling. Our results improve our understanding of the composition of the rhizosphere bacterial community of aquatic macrophytes and highlight the importance of a comprehensive consideration of plant genotype in plant bioremediation in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42(12):2276–2281

    CAS  Google Scholar 

  • Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26(8):1379–1384

    CAS  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576

    CAS  PubMed  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6(2):343–351

    PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media. https://gephi.org/users/publications/.

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Google Scholar 

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219

    PubMed  PubMed Central  Google Scholar 

  • Bledsoe RB, Goodwillie C, Peralta AL (2020) Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres. mSphere 5(3):e00035-20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57-U11

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanomi G, Cesarano G, Antignani V, Di Maio C, De Filippis F, Scala F (2018) Conventional farming impairs Rhizoctonia solani disease suppression by disrupting soil food web. J Phytopathol 166(9):663–673

    CAS  Google Scholar 

  • Bonito G, Benucci GMN, Hameed K, Weighill D, Jones P, Chen KH, Jacobson D, Schadt C, Vilgalys R (2019) Fungal-Bacterial networks in the Populus rhizobiome are impacted by soil properties and host genotype. Front Microbiol 10:481

    PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    CAS  PubMed  Google Scholar 

  • Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87(3):65–79

    PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho JRS, Amaral FM, Florencio L, Kato MT, Delforno TP, Gavazza S (2020) Microaerated UASB reactor treating textile wastewater: the core microbiome and removal of azo dye direct black 22. Chemosphere 242:125157

    CAS  PubMed  Google Scholar 

  • Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD et al (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543(7646):513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of north America. Aquat Bot 64(3–4):261–273

    Google Scholar 

  • Chen YH, Dai Y, Wang YL, Wu Z, Xie SG, Liu Y (2016) Distribution of bacterial communities across plateau freshwater lake and upslope soils. J Environ Sci 43:61–69

    CAS  Google Scholar 

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350(6261):663–666

    CAS  PubMed  Google Scholar 

  • Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Clercq D, Van Trappen S, Cleenwerck I, Ceustermans A, Swings J, Coosemans J, Ryckeboer J (2006) Rhodanobacter spathiphylli sp nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. Int J Syst Evol Microbiol 56:1755–1759

    PubMed  Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Google Scholar 

  • de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M et al (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat commun 9:3033

    PubMed  PubMed Central  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6(2):242–245

    PubMed  Google Scholar 

  • Deng WK, Wang YB, Liu ZX, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS ONE 9(11):e111988

    PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):E911–E920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan KK, Weisenhorn P, Gilbert JA, Chu HY (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    CAS  Google Scholar 

  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8(7):e1002606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459(7244):193–199

    CAS  PubMed  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    PubMed  Google Scholar 

  • Grady KC, Ferrier SM, Kolb TE, Hart SC, Allan GD, Whitham TG (2011) Genetic variation in productivity of foundation riparian species at the edge of their distribution: implications for restoration and assisted migration in a warming climate. Glob Change Biol 17(12):3724–3735

    Google Scholar 

  • Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    PubMed  PubMed Central  Google Scholar 

  • He RJ, Zeng J, Zhao DY, Huang R, Yu ZB, Wu QL (2020) Contrasting patterns in diversity and community assembly of Phragmites australis root-associated bacterial communities from different seasons. Appl Environ Microbiol 86(14):e00379-e420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa K, Shibata T, Nakamura I, Hishida A (2004) Discrimination among species of Papaver based on the plastid rpl16 gene and the rpl16-rpl14 spacer sequence. Forensic Sci Int 139(2–3):195–199

    CAS  PubMed  Google Scholar 

  • Hu SW, He RJ, Zhou Q, Wang SR, Huang R, Cao XY, Ding H, Zeng J, Zhao DY (2019) Genetic variation characteristics of Phragmites australis populations from the middle and lower reaches of the Yangtze River and the Yunnan-Guizhou Plateau. Ecol Environ Sci 28(7):1379–1387 ((in Chinese))

    Google Scholar 

  • Huang R, Zeng J, Zhao DY, Cook KV, Hambright KD, Yu ZB (2020) Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol Oceanogr 65(S1):S38–S48

    Google Scholar 

  • İnceoğlu Ö, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76(11):3675–3684

    PubMed  PubMed Central  Google Scholar 

  • Jiao CC, Zhao DY, Zeng J, Guo L, Yu ZB (2020a) Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Sci Total Environ 740:140010

    CAS  PubMed  Google Scholar 

  • Jiao S, Yang YF, Xu YQ, Zhang J, Lu YH (2020b) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14(1):202–216

    PubMed  Google Scholar 

  • Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 8(3):385–397

    CAS  PubMed  Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MHG, Olesen B, Riis T, Sorrell BK, Brix H (2012) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99(3):538–551

    CAS  PubMed  Google Scholar 

  • Lau MK, Keith AR, Borrett SR, Shuster SM, Whitham TG (2016) Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution. Ecology 97(3):733–742

    PubMed  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SA, Kanth BK, Kim HS, Kim T-W, Sang MK, Song J, Weon H-Y (2019) Complete genome sequence of the plant growth-promoting endophytic bacterium Rhodanobacter glycinis T01E–68 isolated from tomato (Solanum lycopersicum L.) plant roots. Korean J Microbiol 55(4):422–424

    Google Scholar 

  • Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chen L, Zhang JB, Yin J, Huang SM (2017) Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front Microbiol 8:187

    PubMed  PubMed Central  Google Scholar 

  • Li BQ, Xu R, Sun XX, Han F, Xiao EZ, Chen L, Qiu L, Sun WM (2021) Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere 263:128227

    CAS  PubMed  Google Scholar 

  • Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME (2019) Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol 19(1):201

    PubMed  PubMed Central  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Yang ZM, Feng J, Zhu J, Huang QY (2020) Microbial taxonomic and functional attributes consistently predict soil CO2 emissions across contrasting croplands. Sci Total Environ 70:134885

    Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305):1272–1277

    CAS  PubMed  Google Scholar 

  • Lu LH, Yin SH, Liu X, Zhang WM, Gu TY, Shen QR, Qin HZ (2013) Fungal networks in yield- invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biol Biochem 65:186–194

    CAS  Google Scholar 

  • Lynch EA, Saltonstall K (2002) Paleoecological and genetic analyses provide evidence for recent colonization of native Phragmites australis populations in a lake superior wetland. Wetlands 22(4):637–646

    Google Scholar 

  • Lyu YJ, Huang R, Zeng J, Wu QL (2020) Aquatic macrophytes and local factors drive bacterial community distribution and interactions in a riparian zone of lake Taihu. Water 12(2):432

    CAS  Google Scholar 

  • Ma MC, Wang CC, Ding YQ, Li L, Shen DL, Jiang X, Guan DW, Cao FM, Chen HJ, Feng RH et al (2011) Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193(1):311–312

    CAS  PubMed  Google Scholar 

  • Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, Brookes PC, Xu JM, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10(8):1891–1901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Zhao KK, Lv XF, Su WQ, Dai ZM, Gilbert JA, Brookes PC, Faust K, Xu JM (2018) Genetic correlation network prediction of forest soil microbial functional organization. ISME J 12(10):2492–2505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    PubMed  PubMed Central  Google Scholar 

  • Mahoney AK, Yin C, Hulbert SH (2017) Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front Plant Sci 8:132

    PubMed  PubMed Central  Google Scholar 

  • Manzanera M, Narváez-Reinaldo JJ, García-Fontana C, Vílchez JI, González-López J (2015) Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation-tolerant strain. Microbiol Resour Announce 3(3):e00648-e715

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    CAS  PubMed  Google Scholar 

  • Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60(6):1729–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moënne-Locco Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43(2):163–170

    CAS  Google Scholar 

  • Nelson EB, Karp MA (2013) Soil pathogen communities associated with native and non-native Phragmites australis populations in freshwater wetlands. Ecol Evol 3(16):5254–5267

    PubMed  PubMed Central  Google Scholar 

  • Nepusz T, Csárdi G (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1–9

    Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, de Valplne P, Brodie EL, Firestone MK (2016) Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97(5):1307–1318

    PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al (2019) Vegan: Community ecology package. R package version 2.5–6

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110(16):6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ (2019) Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7(1):114

    PubMed  PubMed Central  Google Scholar 

  • Pietrangelo L, Bucci A, Maiuro L, Bulgarelli D, Naclerio G (2018) Unraveling the composition of the root-associated bacterial microbiota of Phragmites australis and Typha latifolia. Front Microbiol 9:1650

    PubMed  PubMed Central  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Rev Biol Fertil Soils 51(4):403–415

    CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20(6):345–353

    PubMed  Google Scholar 

  • Qi GF, Ma GQ, Chen S, Lin CC, Zhao XY (2019) Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Appl Environ Microbiol 85(13):e00162-e219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao QH, Wang FR, Zhang JX, Chen Y, Zhang CY, Liu GD, Zhang H, Ma CL, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:3940

    PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database progect: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, Leroy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89(3):773–781

    PubMed  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939

    PubMed  Google Scholar 

  • Srivastava JK, Chandra H, Kalra SJS, Mishra P, Khan H, Yadav P (2017) Plant-microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci 7:1079–1090

    CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(1–2):93–117

    CAS  PubMed  Google Scholar 

  • Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci USA 108(9):3648–3652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant-microbe interactions. Curr Opin Biotechnol 21(3):339–345

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25(24):4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm CM, Carter KR, Carrell AA, Jun SR, Jawdy SS, Vélez JM, Gunter LE, Yang ZM, Nookaew I, Engle NL et al (2018) Abiotic stresses shift belowground Populus-associated bacteria toward a core stress microbiome. mSystems. https://doi.org/10.1128/mSystems.00070-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Bio Fertil Soils 47(8):907–916

    CAS  Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64(2):283–296

    PubMed  Google Scholar 

  • Vilchez S, Manzanera M (2011) Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 91(5):1297–1304

    CAS  PubMed  Google Scholar 

  • Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, Gonzalez-Pena A, Peiffer J, Koren O, Shi QJ et al (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci U S A 115(28):7368–7373

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HG, Wei Z, Mei LJ, Gu JX, Yin SS, Faust K, Raes J, Deng Y, Wang YL, Shen QR et al (2017) Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol Biochem 105:227–235

    CAS  Google Scholar 

  • Wu LW, Ning DL, Zhang B, Li Y, Zhang P, Shan XY, Zhang QT, Brown M, Li ZX, Van Nostrand JD et al (2019) Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol 4(7):1183–1195

    CAS  PubMed  Google Scholar 

  • Xu HM, Zhao DY, Huang R, Cao XY, Zeng J, Yu ZB, Hooker KV, Hambright KD, Wu QL (2018a) Contrasting network features between free-living and particle-attached bacterial communities in Taihu Lake. Microb Ecol 76(2):303–313

    PubMed  Google Scholar 

  • Xu J, Zhang YZ, Zhang PF, Trivedi P, Riera N, Wang YY, Liu X, Fan GY, Tang JL, Coletta-Filho HD et al (2018b) The structure and function of the global citrus rhizosphere microbiome. Nat commun 9:4894

    PubMed  PubMed Central  Google Scholar 

  • Yang G, Wang JL (2019) Enhancing biohydrogen production from waste activated sludge disintegrated by sodium citrate. Fuel 258:116177

    CAS  Google Scholar 

  • Yarwood SA, Baldwin AH, Mateu MG, Buyer JS (2016) Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biol Invasions 18(9):2717–2728

    Google Scholar 

  • Zhang LN, Wang DC, Hu Q, Dai XQ, Xie YS, Li Q, Liu HM, Guo JH (2019) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668

    PubMed  PubMed Central  Google Scholar 

  • Zhao DY, Shen F, Zeng J, Huang R, Yu ZB, Wu QL (2016) Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci Total Environ 573:817–825

    CAS  PubMed  Google Scholar 

  • Zhong YJ, Yang YQ, Liu P, Xu RN, Rensing C, Fu XD, Liao H (2019) Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant Cell Environ 42(6):2028–2044

    CAS  PubMed  Google Scholar 

  • Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. mBio 1(4):e00169-e210

    PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Zhang XM, He RJ, Wang SR, Jiao CC, Huang R, He XW, Zeng J, Zhao DY (2019) The composition and assembly of bacterial communities across the rhizosphere and Phyllosphere compartments of Phragmites Australis. Diversity-Basel 11(6):98

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFC0402710), the National Natural Science Foundation of China (32022050, 31730013, 41871096 and 31971478), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0503), the Natural Science Foundation of Jiangsu Province, China (BK20181311), and the Project of Young Scientist Group of NIGLAS (2021NIGLAS-CJH01).

Author information

Authors and Affiliations

Authors

Contributions

SH contributed to data curation, writing-original draft, formal analysis, and visualization. RH helped in data curation, formal analysis, and writing-review and editing. WW contributed to experimental guidance and methodology. DZ helped in conceptualization, resources, writing-review and editing, and funding acquisition. JZ contributed to conceptualization, writing-review and editing, supervision, project administration, and funding acquisition. RH contributed to methodology and software. MD helped in conceptualization, writing-review and editing, and funding acquisition. ZY contributed to conceptualization and funding acquisition.

Corresponding authors

Correspondence to Jin Zeng or Ming Duan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1545 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., He, R., Wang, W. et al. Composition and co-occurrence patterns of Phragmites australis rhizosphere bacterial community. Aquat Ecol 55, 695–710 (2021). https://doi.org/10.1007/s10452-021-09855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09855-4

Keywords

Navigation