Skip to main content
Log in

Bound soliton formation in a SESAM mode-locked Cr:ZnSe laser with birefringent plates

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on experimental observation of four phase-locked bound soliton formation in a SESAM mode-locked \(\hbox {Cr}^{2+}\):ZnSe laser with an output power of 20 mW, a temporal pulse-to-pulse separation of 18.2 ps and single pulse duration of 1.4 ps. We demonstrate that birefringence can be used as an efficient mechanism to achieve bound state generation in solid-state lasers as an alternative method to Kerr-lens and SESAM saturation by a pump power increase or a total net cavity dispersion variation. In this work, we consider two different setup configurations to demonstrate the birefringence influence on bound soliton formation. The suggested technique could be effectively used in the realization of mode-locked lasers based on solid-state active media operating in bound-state or multi-bound regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, Recent progress in transition metal doped II-VI mid-IR lasers. IEEE J. Sel. Topics Quantum Electron. 13, 810–822 (2007)

    Article  ADS  Google Scholar 

  2. S.B. Mirov, I.S. Moskalev, S. Vasilyev, V. Smolski, V.V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, V. Gapontsev, Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides. IEEE J. Sel. Topics Quantum Electron. 24, 1–29 (2018)

    Article  Google Scholar 

  3. E. Sorokin, S. Naumov, I.T. Sorokina, Ultrabroadband infrared solid state lasers. IEEE J. Sel. Topics Quantum Electron. 11, 690–712 (2005)

    Article  ADS  Google Scholar 

  4. N. Picqué, T.W. Hänsch, Frequency comb spectroscopy. Nat. Photonics 13, 146–157 (2019)

    Article  ADS  Google Scholar 

  5. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, M. Richardson, Welding of polymers using a 2\(\mu \)m thulium fiber laser. Opt. Laser Technol. 44, 2095–2099 (2012)

    Article  Google Scholar 

  6. C. Kerse, H. Kalaycloğlu, P. Elahi, B. çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aş1k, B. Öktem, H. Hoogland, R. Holzwarth, F. Ö. Ilday, Ablation-cooled material removal with ultrafast bursts of pulses, Nature 537, 84–88 (2016)

  7. J. Wu, H. Cai, X. Han, H. Zeng, Multi-pulse operation of a Kerr-lens mode-locked femtosecond laser. Chin. Opt. Lett. 6, 76–78 (2008)

    Article  ADS  Google Scholar 

  8. S. Zhang, F. Lu, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, C. Lu, Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser. Opt. Lett. 30, 2852–2854 (2005)

    Article  ADS  Google Scholar 

  9. S.C. Li, T.L. Huang, Y.H. Hsieh, H.C. Liang, K.F. Huang, Y.F. Chen, Generation and characterization of burst modes in passively mode-locked lasers with internal Fabry-Perot cavities. Opt. Lett. 45, 61–64 (2020)

    Article  ADS  Google Scholar 

  10. C.-H. Yeh, Y. Hsu, C.-W. Chow, Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode. Laser Phys. Lett. 13, 065103 (2016)

    Article  ADS  Google Scholar 

  11. D.Y. Tang, L.M. Zhao, B. Zhao, A.Q. Liu, Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 72, 043816 (2005)

    Article  ADS  Google Scholar 

  12. D.Y. Tang, W.S. Man, H.Y. Tam, P.D. Drummond, Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64, 033814 (2001)

    Article  ADS  Google Scholar 

  13. L.M. Zhao, D.Y. Tang, D. Liu, Ultrahigh-repetition-rate bound-soliton fiber laser. Appl. Phys. B 99, 441–447 (2010)

    Article  ADS  Google Scholar 

  14. L.N. Binh, Optical multi-bound solitons (CRC Press, Boca Raton, 2019)

    Google Scholar 

  15. L.M. Zhao, D.Y. Tang, T.H. Cheng, H.Y. Tam, C. Lu, Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion. Appl. Opt. 46, 4768–4773 (2007)

    Article  ADS  Google Scholar 

  16. Y. Luo, Y. Xiang, B. Liu, Y. Qin, Q. Sun, X. Tang, P.P. Shum, Dispersion-Managed Soliton Molecules in a Near Zero-Dispersion Fiber Laser. IEEE Photonics J. 10, 1–10 (2018)

    Google Scholar 

  17. R. Liu, T. Wang, D. Zhao, P. Lin, Q. Yuan, H. Ji, P. Chen, Y. Zhao, Self-organized structures of bound states in a 2 \(\mu \)m dispersion-managed mode-locked fiber laser. Appl. Opt. 58, 6464–6469 (2019)

    Article  Google Scholar 

  18. N. Tolstik, E. Sorokin, I.T. Sorokina, Kerr-lens mode-locked Cr:ZnS laser. Opt. Lett. 38, 299–301 (2013)

    Article  ADS  Google Scholar 

  19. V.L. Kalashnikov, E. Sorokin, I.T. Sorokina, Multipulse operation and limits of the Kerr-lens mode-locking stability. IEEE J. Quantum Electron. 39, 323–336 (2003)

    Article  ADS  Google Scholar 

  20. X. Bu, Y. Shi, J. Xu, H. Li, P. Wang, Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser. Appl. Phys. B 124, 99 (2018)

    Article  ADS  Google Scholar 

  21. V.A. Akimov, M.P. Frolov, Y.V. Korostelin, V.I. Kozlovsky, A.I. Landman, YuP Podmar’kov, A.A. Voronov, Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers. Phys. Status Solidi (c) 3, 1213–1216 (2006)

    Article  ADS  Google Scholar 

  22. B.L. Van Horn, H.H. Winter, Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles. Appl. Opt. 40, 2089–2094 (2001)

    Article  ADS  Google Scholar 

  23. B.A. Malomed, Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation. Phys. Rev. A 44, 6954–6957 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  24. N.N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Multisoliton solutions of the complex Ginzburg-Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  25. V.V. Afanasjev, B.A. Malomed, P.L. Chu, Stability of bound states of pulses in the Ginzburg-Landau equations. Phys. Rev. E 56, 6020–6025 (1997)

    Article  ADS  Google Scholar 

  26. A. Gladyshev, Y. Yatsenko, A. Kolyadin, V. Kompanets, I. Bufetov, Mid-infrared 10-\(\mu \)J-level sub-picosecond pulse generation via stimulated Raman scattering in a gas-filled revolver fiber. Opt. Mater. Express 10, 3081–3089 (2020)

    Article  Google Scholar 

  27. N. H. Seong ,Dug Y. Kim, Experimental observation of stable bound solitons in a figure-eight fiber laser, Opt. Lett. 27, 1321–1323 (2002)

  28. L. Gui, X. Xiao, C. Yang, Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser. J. Opt. Soc. Am. B 30, 158–164 (2013)

    Article  ADS  Google Scholar 

  29. L.M. Zhao, D.Y. Tang, T.H. Cheng, C. Lu, H.Y. Tam, X.Q. Fu, S.C. Wen, Passive harmonic mode locking of soliton bunches in a fiber ring laser. Opt. Quantum Electron. 40, 1053–1064 (2008)

    Article  Google Scholar 

  30. U. Demirbas, Off-surface optic axis birefringent filters for smooth tuning of broadband lasers. Appl. Opt. 56, 7815–7825 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.O.L. acknowledges the Russian Science Foundation according to the research project No. 20-79-00155 for the support in the laser development and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav O. Leonov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, S.O., Frolov, M.P., Korostelin, Y.V. et al. Bound soliton formation in a SESAM mode-locked Cr:ZnSe laser with birefringent plates. Appl. Phys. B 127, 56 (2021). https://doi.org/10.1007/s00340-021-07604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07604-x

Navigation