Skip to main content
Log in

Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In the present study, the finite-time asynchronous dissipative filter design problem for the Markov jump systems with conic-type nonlinearity is studied. The hidden Markov model can describe the asynchronism embodied in the system modes and the filter modes reasonably. Moreover, a suitable Lyapunov-Krasovskii function is utilized and linear matrix inequalities are applied to obtain adequate conditions. These techniques guarantee the finite-time boundedness and strict dissipativity of the filtering error dynamic system. Furthermore, the design problems of the passive filter and the H filter are studied by adjusting the three parameters \({\cal U}\), \({\cal G}\) and \({\cal V}\). Finally, the filter gains and the optimal index α* are obtained and the correctness and feasibility of the designed approach are verified by a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shen Y, Wu Z G, Shi P, et al. H control of Markov jump time-delay systems under asynchronous controller and quantizer. Automatica, 2019, 99: 352–360

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang J, Ma S P, Zhang C G, et al. H state estimation via asynchronous filtering for descriptor Markov jump systems with packet losses. Signal Process, 2019, 154: 159–167

    Article  Google Scholar 

  3. Zhang L X, Cai B, Shi Y. Stabilization of hidden semi-Markov jump systems: emission probability approach. Automatica, 2019, 101: 87–95

    Article  MathSciNet  MATH  Google Scholar 

  4. Lian J, Li S Y, Liu, J. T-S fuzzy control of positive Markov jump nonlinear systems. IEEE Trans Fuzzy Syst, 2018, 26: 2374–2383

    Article  Google Scholar 

  5. Kavikumar R, Sakthivel R, Kwon O M, et al. Reliable non-fragile memory state feedback controller design for fuzzy Markov jump systems. Nonlin Anal-Hybrid Syst, 2020, 35: 100828

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang L Q, Fang M, Wu Z-G. Mean square stability for Markov jump Boolean networks. Sci China Inf Sci, 2020, 63: 112205

    Article  MathSciNet  Google Scholar 

  7. Li H Y, Shi P, Yao D I. Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults. IEEE Trans Automat Contr, 2017, 62: 1933–1939

    Article  MathSciNet  MATH  Google Scholar 

  8. Shen H, Wu Z G, Park J H. Reliable mixed passive and filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int J Robust Nonlin Control, 2015, 25: 3231–3251

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng Z G, Shi P. Two equivalent sets: application to singular systems. Automatica, 2017, 77: 198–205

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen Y, Wu Z G, Shi P, et al. Model reduction of Markovian jump systems with uncertain probabilities. IEEE Trans Automat Contr, 2020, 65: 382–388

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng Z G, Shi P. Sliding mode control of singular stochastic Markov jump systems. IEEE Trans Automat Contr, 2017, 62: 4266–4273

    Article  MathSciNet  MATH  Google Scholar 

  12. Swierniak A, Simek K, Boukas E K. Intelligent robust control of fault tolerant linear systems. IFAC Proc Vol, 1997, 30: 245–248

    Article  Google Scholar 

  13. Bäuerle N, Rieder U. Markov Decision Processes With Applications to Finance. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  14. Zhang H, Gray W S, Gonzalez O R. Performance analysis of digital flight control systems with rollback error recovery subject to simulated neutron-induced upsets. IEEE Trans Contr Syst Technol, 2008, 16: 46–59

    Article  Google Scholar 

  15. Shen Y, Wu Z G, Shi P, et al. Dissipativity based fault detection for 2D Markov jump systems with asynchronous modes. Automatica, 2019, 106: 8–17

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang M, Shi P, Dong S L. Sliding mode control for Markov jump systems with delays via asynchronous approach. IEEE Trans Syst Man Cyber Syst, 2019. doi: https://doi.org/10.1109/TSMC.2019.2917926

  17. Song J, Niu Y G, Zou Y Y. Asynchronous output feedback control of time-varying Markovian jump systems within a finite-time interval. J Franklin Institute, 2017, 354: 6747–6765

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu Z G, Shi P, Shu Z, et al. Passivity-based asynchronous control for Markov jump systems. IEEE Trans Automat Contr, 2017, 62: 2020–2025

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang M, Shi P, Liu Z T, et al. Fuzzy model-based asynchronous H filter design of discrete-time Markov jump systems. J Franklin Institute, 2017, 354: 8444–8460

    Article  MathSciNet  MATH  Google Scholar 

  20. Nie R, He S P, Luan X L. Finite-time stabilisation for a class of time-delayed Markovian jumping systems with conic non-linearities. IET Control Theory Appl, 2018, 13: 1278–1283

    MathSciNet  MATH  Google Scholar 

  21. Song J, Niu Y G, Zou Y Y. Finite-time sliding mode control synthesis under explicit output constraint. Automatica, 2016, 65: 111–114

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng P, He S P. Observer-based finite-time asynchronous control for a class of hidden Markov jumping systems with conic-type non-linearities. IET Control Theory Appl, 2019, 14: 244–252

    Article  MathSciNet  Google Scholar 

  23. Feng F, Yaz E E, Schneider S C, et al. Discrete-time resilient controller design with general criteria for a class of uncertain nonlinear systems. In: Proceedings of American Control Conference, 2014. 4268–4273

  24. Jeong C S, Feng F, Yaz E E, et al. Robust and resilient optimal controller design for a class of nonlinear system with general criteria. In: Proceedings of American Control Conference, 2010. 6363–6368

  25. Jafari A A, Alimohammady M. Conic type Caffarelli-Kohn-Nirenberg inequality on manifold with conical singularity. J Pseudo-Differ Oper Appl, 2019, 10: 915–927

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalman R E. A new approach to linear filtering and prediction problems. J Basic Eng, 1960, 82: 35–45

    Article  MathSciNet  Google Scholar 

  27. He S P. Energy-to-peak filtering for T-S fuzzy systems with Markovian jumping: the finite-time case. Neurocomputing, 2015, 168: 348–355

    Article  Google Scholar 

  28. Yin Y Y, Shi P, Liu F, et al. Fuzzy model-based robust H filtering for a class of nonlinear nonhomogeneous Markov jump systems. Signal Process, 2013, 93: 2381–2391

    Article  Google Scholar 

  29. Hua M G, Zheng D D, Deng F Q. H filtering for nonhomogeneous Markovian jump repeated scalar nonlinear systems with multiplicative noises and partially mode-dependent characterization. IEEE Trans Syst Man Cyber Syst, 2019. doi: https://doi.org/10.1109/TSMC.2019.2919146

  30. Wu Z G, Shi P, Su H Y, et al. Asynchronous L2-L filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica, 2014, 50: 180–186

    Article  MATH  Google Scholar 

  31. Zhang L X, Zhu Y Z, Shi P, et al. Resilient asynchronous H filtering for Markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans Cybern, 2015, 45: 2840–2852

    Article  Google Scholar 

  32. Willems J C. Dissipative dynamical systems part I: general theory. Archive Rational Mech Anal, 1972, 45: 321–351

    Article  MathSciNet  MATH  Google Scholar 

  33. Hill D, Moylan P. The stability of nonlinear dissipative systems. IEEE Trans Automat Contr, 1976, 21: 708–711

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu Z G, Dong S L, Su H Y, et al. Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans Cybern, 2018, 48: 2426–2436

    Article  Google Scholar 

  35. Dong S L, Chen C, Fang M, et al. Dissipativity-based asynchronous fuzzy sliding mode control for T-S fuzzy hidden Markov jump systems. IEEE Trans Cybern, 2020, 50: 4020–4030

    Article  Google Scholar 

  36. Liu Y J, Fang F, Park J H, et al. Asynchronous output feedback dissipative control of Markovian jump systems with input time delay and quantized measurements. Nonlin Anal-Hybrid Syst, 2019, 31: 109–122

    Article  MathSciNet  MATH  Google Scholar 

  37. Feng Z G, Lam J. Robust reliable dissipative filtering for discrete delay singular systems. Signal Process, 2012, 92: 3010–3025

    Article  Google Scholar 

  38. Dai M C, Xia J W, Park J H, et al. Asynchronous dissipative filtering for Markov jump discrete-time systems subject to randomly occurring distributed delays. J Franklin Institute, 2019, 356: 2395–2420

    Article  MathSciNet  MATH  Google Scholar 

  39. Dong S L, Wu Z G, Pan Y J, et al. Hidden-Markov-model-based asynchronous filter design of nonlinear Markov jump systems in continuous-time domain. IEEE Trans Cybern, 2018, 48: 2294–2304

    Article  Google Scholar 

  40. Kim S H. Asynchronous dissipative filter design of nonhomogeneous Markovian jump fuzzy systems via relaxation of triple-parameterized matrix inequalities. Inf Sci, 2019, 478: 564–579

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang J, Shen L, Xia J W, et al. Asynchronous dissipative filtering for nonlinear jumping systems subject to fading channels. J Franklin Institute, 2020, 357: 589–605

    Article  MathSciNet  MATH  Google Scholar 

  42. Yu H, Hao F. The existence of zeno behavior and its application to finite-time event-triggered control. Sci China Inf Sci, 2020, 63: 139201

    Article  MathSciNet  Google Scholar 

  43. Zhu Y C, Song X N, Wang M, et al. Finite-time asynchronous filtering design of Markovian jump systems with randomly occurred quantization. Int J Control Autom Syst, 2020, 18: 450–461

    Article  Google Scholar 

  44. Fang M, Dong S L, Wu Z G. Asynchronous H filtering of continuous-time Markov jump systems. Int J Robust Nonlin Control, 2020, 30: 685–698

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu Y H, Wang Y Q, Zhuang G M, et al. An event-triggered asynchronous H filtering for singular Markov jump systems with redundant channels. J Franklin Institute, 2019, 356: 10076–10101

    Article  MathSciNet  MATH  Google Scholar 

  46. Shang H, Zong G D, Qi W H. Finite-time asynchronous H filtering for positive Markov jump systems. J Franklin Institute, 2020, 357: 11584–11603

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61673001, 61722306), State Key Program of National Natural Science Foundation of China (Grant No. 61833007), Foundation for Distinguished Young Scholars of Anhui Province (Grant No. 1608085J05), Key Support Program of University Outstanding Youth Talent of Anhui Province (Grant No. gxydZD2017001), and Serbian Ministry of Education, Science and Technological Development (Grant No. 451-03-68/2020-14/200108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, S., Stojanovic, V. et al. Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems. Sci. China Inf. Sci. 64, 152206 (2021). https://doi.org/10.1007/s11432-020-2913-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2913-x

Keywords

Navigation