Skip to main content
Log in

3D shallow deep neural network for fast and precise segmentation of left atrium

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the small size of left atrium with respect to the whole MRI volume, accurate segmentation of left atrium is challenging. Most of the existing deep learning approaches are based on cropping or cascading networks. In this work, we present a novel deep learning architecture for the segmentation of left atrium from MRI volume which incorporates the residual learning based encoder-decoder network. We introduce a loss function and parameter adjustments to deal with the issue of class imbalance and unavailability of large medical imaging dataset. To facilitate the high quality segmentation, we present a three-dimensional multi-scale residual learning based architecture that maintains coarse and fine level features throughout the network. Experimental results have shown a considerable improvement in segmentation performance by surpassing the current benchmarks (especially the winner of Left Atrial Segmentation Challenge-2018) with fewer parameters compared to the state-of-the-art approaches, thus potentially supporting cardiac diagnosis and surgery without adding any extensive pre-processing of input volumes or any post-processing on the base network’s output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akoum, N., Fernandez, G., Wilson, B., McGann, C.J., Kholmovski, E.G., Marrouche, N.F.: Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 24(10), 1104–9 (2013)

    Article  Google Scholar 

  2. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  3. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn. Reson. Med. 78(6), 2439–2448 (2017)

    Article  Google Scholar 

  4. Bai, W., Sinclair, M., Tarroni, G., Oktay, O., Rajchl, M., Vaillant, G., Lee, A., Aung, N., Lukaschuk, E., Sanghvi, M., Zemrak, F., Fung, K., Paiva, J., Carapella, V., Kim, Y., Suzuki, H., Kainz, B., Matthews, P., Petersen, S., Piechnik, S., Neubauer, S., Glocker, B., and Rueckert, D.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing. J. Cardiovasc. Magn. Reson. 20(1), (2018). ISSN 1097-6647. https://doi.org/10.1186/s12968-018-0471-x

  5. Caudron, J., Fares, J., Lefebvre, V., Vivier, P.-H., Petitjean, C., Dacher, J.-N.: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability. Acad. Radiol. 19(8), 991–1002 (2012)

    Article  Google Scholar 

  6. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  7. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural Inf. Process. Syst. 2843–2851 (2012)

  8. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2012)

    Article  Google Scholar 

  9. Gerche, A.L., Claessen, G., Bruaene, A.V.D., Pattyn, N., van Cleemput, J., Gewillig, M., Bogaert, J., Dymarkowski, S., Claus, P., Heidbuchel, H.: Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ. Cardiovasc. Imaging 6, 329–338 (2013)

    Article  Google Scholar 

  10. Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K.S., Davidson, B.R., Pereira, S.P., Clarkson, M.J., Barratt, D.C.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37, 1822–1834 (2018)

    Article  Google Scholar 

  11. Goodfellow, I.G., Bengio, Y., Courville, A.C.: Deep learning. Nature 521, 436–444 (2015)

    Article  MATH  Google Scholar 

  12. Gupta, S., Girshick, R., Arbeláez, P., and Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: European Conference on Computer Vision, 345–360. Springer (2014)

  13. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: European Conference on Computer Vision, 297–312. Springer (2014)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2016, 770–778 (2016a)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. ArXiv (2016b). arXiv:abs/1603.05027

  16. Isensee, F., Jaeger, P. F., Full, P. M., Wolf, I., Engelhardt, S., Maier-Hein, K.: Automatic Cardiac Disease Assessment on cine-MRI via time-series segmentation and domain specific features. In: STACOM@MICCAI (2017a)

  17. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: BrainLes@MICCAI (2017b)

  18. Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S. J., Maier-Hein, K.: Abstract: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. In: Bildverarbeitung für die Medizin (2019)

  19. Joo, H.S., Wong, J., Naik, V.N., Savoldelli, G.L.: The value of screening preoperative chest x-rays: a systematic review. Can. J. Anaesth. 52, 568–574 (2005)

    Article  Google Scholar 

  20. Kamnitsas, K., Bai, W., Ferrante, E., McDonagh, S. G., Sinclair, M., Pawlowski, N., Rajchl, M., Lee, M., Kainz, B., Rueckert, D., Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: BrainLes@MICCAI (2017a)

  21. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multiscale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017b)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks. In: CACM (2017)

  23. Lang, R., Badano, L., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F., Foster, E., Goldstein, S., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M.H., Rietzschel, E.R., Rudski, L., Spencer, K., Tsang, W., Voigt, J.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 16(3), 233–70 (2015)

    Article  Google Scholar 

  24. Li, H., Xu, Z., Taylor, G., Goldstein, T.: Visualizing the loss landscape of neural nets. In: NeurIPS (2018a)

  25. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M. J., and Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: International Conference on Information Processing in Medical Imaging (IPMI) (2017)

  26. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37, 2663–2674 (2018b)

    Article  Google Scholar 

  27. Maceira, A., Cosín-Sales, J., Roughton, M., Prasad, S., Pennell, D.: Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12, 65–65 (2010)

    Article  Google Scholar 

  28. McGann, C., Akoum, N., Patel, A., Kholmovski, E., Revelo, P., Damal, K., Wilson, B., Cates, J., Harrison, A., Ranjan, R., Burgon, N., Greene, T., Kim, D.J., DiBella, E., Parker, D., Macleod, R., Marrouche, N.: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ.: Arrhythmia Electrophysiol. 7, 23–30 (2014)

    Google Scholar 

  29. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360–1371 (2005)

    Article  Google Scholar 

  30. Peterzan, M.A., Rider, O.J., Anderson, L.J.: The role of cardiovascular magnetic resonance imaging in heart failure. Cardiac Failure Rev. 2(2), 115–122 (2016)

    Article  Google Scholar 

  31. Pop, M. A., Sermesant, M., Zhao, J., Li, S., McLeod, K., Young, A., Rhode, K. S., Mansi, T.: Statistical atlases and computational models of the heart. Atrial segmentation and LV quantification challenges. In: Lecture Notes in Computer Science (2018)

  32. Rehman A, Naz S, Razzak MI, Akram F, Imran M, (2020) A deep learning-based framework for automatic brain tumors classification using transfer learning. Circ Syst Signal PR 39(2):757–775

    Article  Google Scholar 

  33. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

  35. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2017)

    Article  Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2015). arXiv:abs/1409.1556

  37. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B.H., Ronneberger, O., Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka, J., Heckers, S., Jarnagin, W.R., McHugo, M., Napel, S., Vorontsov, E., Maier-Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR (2019). arXiv:abs/1902.09063

  38. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2015, 1–9 (2015)

    Google Scholar 

  40. Tobon-Gomez, C., Geers, A.J., Peters, J., Weese, J., Pinto, K., Karim, R., Ammar, M., Daoudi, A., Margeta, J., Sandoval, Z., Stender, B., Zheng, Y., Zuluaga, M.A., Betancur, J., Ayache, N., Chikh, M.A., Dillenseger, J., Kelm, B.M., Mahmoudi, S., Ourselin, S., Schlaefer, A., Schaeffter, T., Razavi, R., Rhode, K.S.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  41. Tobon-Gomez, C., Geers, A.J., Peters, J., Weese, J., Pinto, K., Karim, R., Ammar, M., Daoudi, A., Margeta, J., Sandoval, Z.L., Stender, B., Zheng, Y., Zuluaga, M.A., Betancur, J., Ayache, N., Chikh, A., Dillenseger, J.-L., Kelm, B.M., Mahmoudi, S., Ourselin, S., Schlaefer, A., Schaeffter, T., Razavi, R., Rhode, K.S.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34, 1460–1473 (2015)

    Article  Google Scholar 

  42. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. ArXiv (2016). arXiv:abs/1607.08022

  43. Wang, G., Li, W., Ourselin, S., Vercauteren, T.K.M.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. ArXiv (2017). arXiv:abs/1709.00382

  44. Wang, Y., Xiong, Z., Nalar, A., Hansen, B.J., Kharche, S.R., Seemann, G., Loewe, A., Fedorov, V.V., Zhao, J.: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness. Comput. Biol. Med. 114, 103444 (2019)

    Article  Google Scholar 

  45. Xia, Q., Yao, Y., Hu, Z., and Hao, A.: Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks. In: STACOM@MICCAI (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Kausar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The source code of 3D SR-Net will be publicly available upon acceptance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, A., Razzak, I., Shapiai, M.I. et al. 3D shallow deep neural network for fast and precise segmentation of left atrium. Multimedia Systems 29, 1739–1749 (2023). https://doi.org/10.1007/s00530-021-00776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00776-8

Keywords

Navigation