Skip to main content
Log in

A Four-legged Wall-climbing Robot with Spines and Miniature Setae Array Inspired by Longicorn and Gecko

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In industrial applications, climbing robots are widely used for climbing and detection of rough or smooth pipe surfaces. Inspired by the special claws of longicorn is that can crawl on rough surfaces and the array of tiny bristles of geckos that can crawl on smooth surfaces, a new type of wall-climbing robot for rough or smooth surfaces is proposed in this paper. The bionic palms of the robot are suggested with special bionic hooks inspired by the longicorn and bionic adhesive materials inspired by the gecko with a good performance on adhering on the surfaces. The special bionic hooks are manufactured by the 3D printing method and the bionic adhesive materials are made by the polymer print lithography technology. These two different bionic adhere accessory are used on the robot’s palm to achieve climbing on the different surfaces. This foldable climbing robot can not only bend its own body to accommodate the cylindrical contact surfaces of different diameters, but also crawl on vertical rough and smooth surfaces using their bionic palms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  2. Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Sponberg S, Kenny T W, Ronald F, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 2002, 99, 12252–12256.

    Article  Google Scholar 

  3. Menon C, Sitti M. A biomimetic climbing robot based on the gecko. Journal of Bionic Engineering, 2006, 3, 115–125.

    Article  Google Scholar 

  4. Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: A gecko inspired climbing robot using elastomer adhesives. IEEE International Conference on Robotics & Automation, Orlando, USA, 2006, 2329–2335.

  5. Unver O, Sitti M. Flat dry elastomer adhesives as attachment materials for climbing robots. IEEE Transactions on Robotics, 2010, 26,131–141.

    Article  Google Scholar 

  6. Aksak B, Murphy M P, Sitti M. Gecko inspired microfibrillar adhesives for wall-climbing robots on micro/nanoscale rough surfaces. International Conference on Robotics & Automation, Pasadena, USA, 2008, 3058–3063.

  7. Murphy M P, Kute C, Menguc Y, Sitti M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. International Journal of Robotics Research, 2011, 30, 118–133.

    Article  Google Scholar 

  8. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24, 65–74.

    Article  Google Scholar 

  9. Santos D, Heyneman B, Kim S, Esparza N, Cutkosky M R. Gecko-inspired climbing behaviors on vertical and overhanging surfaces. International Conference on Robotics & Automation, Pasadena, USA, 2008, 1125–1131.

  10. Asbeck A, Dastoor S, Parness A, Fullerton L, Esparza, N, Soto D, Heyneman B, Cutkosky M R. Climbing rough vertical surfaces with hierarchical directional adhesion. IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 5100–5106.

  11. Hawkes E W, Ulmen J, Esparza N, Cutkosky M R. Scaling walls: Applying dry adhesives to the real world. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011, 5100–5106.

  12. Yu Z W, Wang Z Y, Liu R, W P, Dai Z D. Stable gait planning for a gecko-inspired robot to climb on vertical surface. International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 2013, 307–311.

  13. Menon C, Li Y, Sameoto D, Martens C. Abigaille-I: Towards the development of a spider-inspired climbing robot for space use. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics & Biomechatronics, Scottsdale, USA, 2009.

  14. Li Y S, Ahmed A, Sameoto D, Menon C. Abigaille II: Toward the development of a spider-inspired climbing robot. Robotica, 2012, 30, 79–89.

    Article  Google Scholar 

  15. Krahn J, Liu Y, Sadeghi A, Menon C. A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Materials and Structures, 2011, 20, 115021.

    Article  Google Scholar 

  16. Wu X, Wang D, Zhao A W, Li D, Mei T. A Wall-Climbing Robot with Biomimetic Adhesive Pedrail. Advanced Mechatronics and MEMS Devices. Springer, New York, USA, 2013, 179–191.

    Chapter  Google Scholar 

  17. Kim S, Asbeck A T, Cutkosky M R, Provancher W R. Spinybot II: Climbing hard walls with compliant microspines. Proceedings of 12th International Conference on Advanced Robotics, Seattle, USA, 2005, 601–606.

  18. Asbeck A T, Kim S, Cutkosky M R, Provancher W R, Lanzetta M. Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research, 2006, 25, 1165–1179.

    Article  Google Scholar 

  19. Asbeck A, Kim S, McChung A, Parness A, Cutkosky M R. Climbing walls with microspines. International Conference on Robotics & Automation, Florida, USA, 2008, 4315–4317.

  20. Saunders A, Goldman D, Full R, Buehler M. The rise climbing robot: Body and leg design. SPIE Defense & Security Symposium, Unmanned Systems Technology, Florida, USA, 2006, 6230, 623017.

    Google Scholar 

  21. Spenko M J, Haynes G C, Saunders J A, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics, 2008, 25, 223–242.

    Article  Google Scholar 

  22. Haynes G C, Khripin A, Lynch G, Amory J, Saunders A, Rizzi A A, Koditschek D E. Rapid pole climbing with a quadrupedal robot. IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 12–17.

  23. Goldman D I, Chen T S, Dudek D M, Full R J. Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 2006, 209, 2990–3000.

    Article  Google Scholar 

  24. Clark J, Goldman D, Lin P C, Lynch G,Tao C, Komsuoglu H, Full R J, Koditschek D. Design of a bio-inspired dynamical vertical climbing robot. International Conference on Robotics: Science and Systems, Massachusetts, USA, 2007.

  25. Lynch G A, Clark J E, Koditschek D. A self-exciting controller for high-speed vertical running. International Conference on Intelligent Robots and Systems, Missouri, USA, 2009, 631–638.

  26. Lynch G A, Clark J E, Lin P C, Koditschek D E. A bioinspired dynamical vertical climbing robot. The International Journal of Robotics Research, 2012, 31, 974–996.

    Article  Google Scholar 

  27. Miller B, Ordonez C, Clark J E. Examining the effect of rear leg specialization on dynamic climbing with SCARAB: A dynamic quadrupedal robot for locomotion on vertical and horizontal surfaces. Experimental Robotics, 2013, 113–126.

  28. Miller B, Clark J, Darnell A. Running in the horizontal plane with a multi-modal dynamical robot. IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, 3335–3341.

  29. Dickson J D, Clark J E. The effect of sprawl angle and wall inclination on a bipedal, dynamic climbing platform. Adaptive Mobile Robotics, 2012, 459–466.

  30. Dickson J D, Patel J, Clark J E. Towards maneuverability in plane with a dynamic climbing platform. International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, 1355–1361.

  31. Miller B D, Rivera P R, Dickson J D, Clark J E. Running up a wall: the role and challenges of dynamic climbing in enhancing multi-modal legged systems. Bioinspiration & Biomimetics, 2015, 10, 025005.

    Article  Google Scholar 

  32. Wile G D, Daltorio K A, Diller E D,Palmer L R, Gorb S N, Ritzmann R E, Quinn R D. Screenbot: Walking inverted using distributed inward gripping. International Conference on Intelligent Robots and Systems, Nice, France, 2008, 1513–1518.

  33. Palmer L R, Diller E D, Quinn R D. Toward a rapid and robust attachment strategy for vertical climbing. International Conference on Robotics and Automation, Alaska, USA, 2010, 2810–2815.

  34. Birkmeyer P, Peterson K, Fearing R S. DASH: A dynamic 16g hexapedal robot. International Conference on Intelligent Robots and Systems, Missouri, USA, 2009, 2683–2689.

  35. Birkmeyer P, Gillies A G, Fearing R S. CLASH: Climbing vertical loose cloth. International Conference on Intelligent Robots and Systems (IROS), San Francisco, USA, 2011, 5087–5093.

  36. Jensen-Segal S, Virost S, Provancher W R. ROCR: Dynamic vertical wall climbing with a pendular two-link mass-shifting robot. International Conference on Robotics and Automation, California, USA, 2008, 3040–3045.

  37. Provancher W R, Jensen-Segal S I, Fehlberg M A. ROCR: An energy-efficient dynamic wall-climbing robot. IEEE/ASME Transactions on Mechatronics, 2011, 16, 897–906.

    Article  Google Scholar 

  38. Minor M, Dulimarta H, Danghi G, Mukherjee R, Tummala R L, Aslam D M. Design, implementation, and evaluation of an under-actuated miniature biped climbing robot. International Conference on Intelligent Robots & Systems, New Jersey, USA 2000, 1999–2005.

  39. Lal Tummala R, Mukherjee R, Xi N, Aslam D, Dulimarta H, Xiao J, Minor M, Dang G. Climbing the walls. Robotics & Automation Magazine, 2002, 9, 10–19.

    Article  Google Scholar 

  40. Gimenez A, Abderrahim M, Padron V M, Balaguer C. Adaptive control strategy of climbing robot for inspection applications in construction industry. International Conference of the 15th Triennial World Congress of the IFAC, Barcelona, Spain, 2002, 15, 813–813.

    Google Scholar 

  41. Balaguer C, Gimenez A, Jardón A. Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Autonomous Robots, 2005, 18, 157–169.

    Article  Google Scholar 

  42. Wang X, Meng M Q H. An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope. International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 1267–1272.

  43. Zhang P F, Wang H G, Fang L J, Jiang Y. Mechanism and kinematics of a novel climbing robot. Robot, 2007, 1, 14–19.

    Google Scholar 

  44. Wang W, Lee J Y, Rodrigue H, Chu W S, Ahn S H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspiration & Biomimetics, 2014, 9, 046006.

    Article  Google Scholar 

  45. Kim S H, Hashi S, Ishiyama K. Hybrid magnetic mechanism for active locomotion based on inchworm motion. Smart Materials and Structures, 2013, 22, 027001.

    Article  Google Scholar 

  46. Kalouche S, Wiltsie N, Su H J, Parness A. Inchworm style gecko adhesive climbing robot. International Conference on Intelligent Robots and Systems, Chicago, USA, 2014, 2319–2324.

  47. Brackenbury J. Caterpillar kinematics. Nature, 1997, 390, 453–453.

    Article  Google Scholar 

  48. Brackenbury J. Fast locomotion in caterpillars. Journal of Insect Physiology, 1999, 45, 525–533.

    Article  Google Scholar 

  49. Li D Z, Ma X Y, Wang K, Zong G H. Analysis of gait control of wall-climbing caterpillar robot. International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 2010, 1929–1934.

  50. Han I H, Yi H, Song C W, Jeong H E, Lee S Y. A miniaturized wall-climbing segment robot inspired by caterpillar locomotion. Bioinspiration & Biomimetics, 2017, 12, 046003.

    Article  Google Scholar 

  51. Liu Y, Sun S, Wu X, Mei T. A leg-wheel wall-climbing robot utilizing bio-inspired spine feet. International Conference on Robotics and Biomimetics (ROBIO), 2013, 1819–1824.

  52. Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnodamarginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 2002, 205, 2479–2488.

    Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (No. 11774355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, S., Wei, Y., Xu, F. et al. A Four-legged Wall-climbing Robot with Spines and Miniature Setae Array Inspired by Longicorn and Gecko. J Bionic Eng 18, 292–305 (2021). https://doi.org/10.1007/s42235-021-0032-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0032-0

Keywords

Navigation