Skip to main content
Log in

Influence of various temporal recoding on pavlovian eyeblink conditioning in the cerebellum

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We consider the Pavlovian eyeblink conditioning (EBC) via repeated presentation of paired conditioned stimulus (tone) and unconditioned stimulus (US; airpuff). In an effective cerebellar ring network, we change the connection probability \(p_c\) from Golgi to granule (GR) cells, and make a dynamical classification of various firing patterns of the GR cells. Individual GR cells are thus found to show various well- and ill-matched firing patterns relative to the US timing signal. Then, these variously-recoded signals are fed into the Purkinje cells (PCs) through the parallel-fibers (PFs). Based on such unique dynamical classification of various firing patterns, we make intensive investigations on the influence of various temporal recoding (i.e., firing patterns) of the GR cells on the synaptic plasticity of the PF-PC synapses and the subsequent learning process for the EBC. We first note that the variously-recoded PF signals are effectively depressed by the (error-teaching) instructor climbing-fiber (CF) signals from the inferior olive neuron. In the case of well-matched PF signals, they are strongly depressed through strong long-term depression (LTD) by the instructor CF signals due to good association between the in-phase PF and the instructor CF signals. On the other hand, practically no LTD occurs for the ill-matched PF signals because most of them have no association with the instructor CF signals. This kind of “effective” depression at the PF-PC synapses coordinates firings of PCs effectively, which then makes effective inhibitory coordination on the cerebellar nucleus neuron [which elicits conditioned response (CR; eyeblink)]. When the learning trial passes a threshold, acquisition of CR begins. In this case, the timing degree \(\mathcal{T}_d\) of CR becomes good due to presence of the ill-matched firing group which plays a role of protection barrier for the timing. With further increase in the number of trials, strength \(\mathcal S\) of CR (corresponding to the amplitude of eyelid closure) increases due to strong LTD in the well-matched firing group, while its timing degree \(\mathcal{T}_d\) decreases. In this way, the well- and the ill-matched firing groups play their own roles for the strength and the timing of CR, respectively. Thus, with increasing the number of learning trials, the (overall) learning efficiency degree \(\mathcal{L}_e\) (taking into consideration both timing and strength of CR) for the CR is increased, and eventually it becomes saturated. Finally, we also discuss dependence of the variety degree for firing patterns of the GR cells and the saturated learning efficiency degree \(\mathcal{L}_e\) of the CR on \(p_c\) and their relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Achard P, De Schutter E (2008) Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models. Front Comput Neurosci 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Boneau CA (1958) The interstimulus interval and the latency of the conditioned eyelid response. J Exp Psychol 56:464–471

    Article  CAS  PubMed  Google Scholar 

  • Bouvier G, Aljadeff J, Clopath C, Bimbard C, Ranft J, Blot A, Nadal JP, Brunel N, Hakim V, Barbour B (2018) Cerebellar learning using perturbations. eLife 7:e31599

    Article  PubMed  PubMed Central  Google Scholar 

  • Brindley GS (1964) The use made by the cerebellum of the information that it receives from sense organs. IBRO Bull 3:80

    Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Hakim V (2008) Sparsely synchronized neuronal oscillations. Chaos 18:015113

    Article  PubMed  Google Scholar 

  • Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18:1066–1110

    Article  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430

    Article  PubMed  Google Scholar 

  • Bullock D, Fiala JC, Grossberg S (1994) A neural model of timed response learning in the cerebellum. Neural Netw 7:1101–1114

    Article  Google Scholar 

  • Buonomano DV, Mauk MD (1994) Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Comput 6:38–55

    Article  Google Scholar 

  • Chapeau-Blondeau F, Chauvet G (1991) A neural network model of the cerebellar cortex performing dynamic associations. Biol Cybern 65:267–279

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Thompson RF (1995) Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice. Learn Mem 2:185–198

    Article  CAS  PubMed  Google Scholar 

  • Christian KM, Thompson RF (2003) Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 11:427–455

    Article  Google Scholar 

  • Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo E, De Zeeuw CI (2008) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40

    Article  PubMed  Google Scholar 

  • De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci 18:291–295

    Article  PubMed  Google Scholar 

  • Desmond J, Moore J (1988) Adaptive timing in neural networks: the conditioned response. Biol Cybern 58:405–415

    Article  CAS  PubMed  Google Scholar 

  • Domingo JA, Gruart A, Delagado-Garcia JM (1997) Quantal organization of reflex and conditioned eyelid responses. J Neurophysiol 78:2518–2530

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 16:3760–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JH Jr, Nicholson DA, Mukler AS, Rabinak CA, DiPietro NT (2003) Ontogeny of eyeblink conditioned response timing in rats. Behav Neurosci 117:283–291

    Article  PubMed  Google Scholar 

  • Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E (2018) Switching on depression and potentiation in the cerebellum. Cell Rep 22:722–733

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635

    Article  CAS  PubMed  Google Scholar 

  • Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361

    Article  PubMed  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking Neuron Models. Cambridge University Press, New York

    Book  Google Scholar 

  • Gerstner W, van Hemmen JL (1992) Associative memory in a network of “spiking’’ neurons. Network 3:139–164

    Article  Google Scholar 

  • Gluck MA, Reifsnider ES, Thompson RF (1990) Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In: Gluck MA, Rumelhart DE (eds) Developments in connectionist theory. Neuroscience and Connectionist Theory, Erlbaum, Hillsdale, New Jersy, pp 131–185

    Google Scholar 

  • Gormezano I, Kehoe EJ, Marshall BS (1983) Twenty years of classical conditioning with the rabbit. Prog Psychobio Physiol Psychol 10:197–275

    Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    Article  CAS  PubMed  Google Scholar 

  • Häusser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. A neuropsychological theory. Wiley, New York

    Google Scholar 

  • Heiney SA, Wohl MP, Chettih SN, Ruffolo LI, Medina JF (2014) Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. J Neurosci 24:14845–14853

    Article  Google Scholar 

  • Hilgard ER, Campbell AA (1936) The course of acquisition and retention of conditioned eyelid responses in man. J Exp Psychol 19:227–247

    Article  Google Scholar 

  • Hilgard ER, Marquis DG (1935) Acquisition, extinction, and retention of conditioned lid responses to light in dogs. J Comp Psychol 19:29–58

    Article  Google Scholar 

  • Hilgard ER, Marquis DG (1936) Conditioned eyelid responses in monkeys, with a comparison of dog, monkey, and man. Psychol Monogr 47:186–198

    Article  Google Scholar 

  • Ito M (1984) The Cerebellum and Neural Control. Raven Press, New York

    Google Scholar 

  • Ito M (1989) Long-term depression. Ann Rev Neurosci 12:85–102

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1998) Cerebellar learning in the vestibulo-ocular reflex. Trends Cogn Sci 2:313–321

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2002a) Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288

    Article  PubMed  Google Scholar 

  • Ito M (2002b) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896–902

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2012) The cerebellum: brain for an implicit self. Pearson Education Inc, New Jersey

    Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivarsson M, Svesson P (2000) Conditioned eyeblink response consists of two distinct components. J Neurophysiol 83:796–807

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin Neurobiol 6:851–857

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232

    Article  CAS  PubMed  Google Scholar 

  • Kenyon GT, Medina JF, Mauk MD (1998) A mathematical model of the cerebellar-olivary system I: self-regulating equilibrium of climbing fiber activity. J Comput Neurosci 5:17–33

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lim W (2014) Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Meth 226:161–170

    Article  Google Scholar 

  • Kim SY, Lim W (2021) Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 134:173–204

    Article  PubMed  Google Scholar 

  • Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736–1739

    Article  CAS  PubMed  Google Scholar 

  • Lennon W, Yamazaki T, Hecht-Nielsen R (2015) A model of in vitro plasticity at the parallel fiber-molecular layer interneuron synapses. Front Comput Neurosci 9:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci USA 100:15989–15993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinás RR (2014) The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties. Front Neural Circuit 7:96

    Article  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauk MD, Donegan NH (1997) A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem 3:130–158

    Article  Google Scholar 

  • Mauk MD, Ruiz BP (1992) Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. Behav Neurosci 106:666–681

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Thomson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–299

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Clark GA, Lavond DG, Thompson RF (1982) Initial localization of the memory trace for a basic form of learning. Proc Natl Acad Sci USA 79:2731–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000a) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Nores WL, Ohyama T, Mauk MD (2000b) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717–724

    Article  CAS  PubMed  Google Scholar 

  • Molnár E (2014) Motor learning and long-term plasticity of parallel fibre-Purkinje cell synapses require post-synaptic Cdk5/p35. J Neurochem 131:1–3

    Article  PubMed  Google Scholar 

  • Moore JW, Desmond JE, Berthier NE (1989) Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol Cybern 62:17–28

    Article  CAS  PubMed  Google Scholar 

  • Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26:222–227

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Magyar P, Szentágothai J (1971a) Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res 32:1–13

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Magyar P, Szentágothai J (1971b) Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res 32:13–32

    Article  Google Scholar 

  • Palkovits M, Magyar P, Szentágothai J (1972) Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber-purkinje cell numerical transfer. Brain Res 45:15–29

    Article  CAS  PubMed  Google Scholar 

  • Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc Royal Soc Lond 58:240–242

    Article  Google Scholar 

  • Roberts PD (2007) Stability of complex spike timing-dependent plasticity in cerebellar learning. J Comput Neurosci 22:283–296

    Article  PubMed  Google Scholar 

  • Safo P, Regehr WG (2008) Timing dependence of the induction of cerebellar LTD. Neuropharmacology 54:213–218

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M (1987) Synaptic modification of parallel fibre-purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 394:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiderman N, Fuentes I, Gormezano I (1962) Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science 136:650–652

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182

    Article  PubMed  Google Scholar 

  • Skelton RW (1988) Bilateral cerebellar lesions disrupt conditioned eyelid responses in unrestrained rats. Behav Neurosci 102:586–590

    Article  CAS  PubMed  Google Scholar 

  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31:785–797

    Article  CAS  PubMed  Google Scholar 

  • Wagner AR, Brandon SE (1989) Some relationships between a computational model (SOP) and a neural circuit for Pavlovian (rabbit eyeblink) conditioning. In: Klein SB, Mowrer RR (eds) Contemporary Learning Theories: pavlovian conditioning and The status of traditional learning theories. Erlbaum, Hillsdale, New Jersy, pp 149–189

    Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of fscortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed  Google Scholar 

  • Wang SH, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 3:1266–1273

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Nagao S (2012) A computational mechanism for unified gain and timing control in the cerebellum. PLoS ONE 7:e33319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Tanaka S (2005) Neural modeling of an internal clock. Neural Comput 17:1032–1058

    Article  PubMed  Google Scholar 

  • Yamazaki T, Tanaka S (2007) A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 26:2279–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lisberger SG (2014) Purkinje-cell plasticity and cefsrebellar motor learning are graded by complex-spike duration. Nature 510:529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Raman IM (2010) Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9:56–66

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 20162007688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochang Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Parameter values for the LIF neuron models and the synaptic currents

In Appendix A, we list four tables which show parameter values for the LIF neuron models in Subsect. 2.3 and the synaptic currents in Subsect. 2.4. These values are adopted from physiological data (Yamazaki and Tanaka 2007; Yamazaki and Nagao 2012).

For the LIF neuron models, the parameter values for the capacitance \(C_X\), the leakage current \(I_L^{(X)}\), the AHP current \(I_{AHP}^{(X)}\), and the external constant current \(I_{ext}^{(X)}\) are shown in Table 1.

For the synaptic currents, the parameter values for the maximum conductance \(\bar{g}_{R}^{(T)}\), the synaptic weight \(J_{ij}^{(T,S)}\), the synaptic reversal potential \(V_{R}^{(S)}\), the synaptic decay time constant \(\tau _{R}^{(T)}\), and the amplitudes \(A_1\) and \(A_2\) for the type-2 exponential-decay function in the granular layer, the Purkinje-molecular layer, and the other parts for the CN and IO neurons are shown in Tables 2, 3, and 4, respectively.

Refined rule for synaptic plasticity

In Appendix B, we introduce a refined rule for synaptic plasticity. The coupling strength of the synapse from the pre-synaptic neuron j in the source S population to the post-synaptic neuron i in the target T population is \(J_{ij}^{(T,S)}\). Initial synaptic strengths for \(J_{ij}^{(T,S)}\) are given in Tables 2, 3, and 4. In this work, we assume that learning occurs only at the PF-PC synapses. Hence, only the synaptic strengths \(J_{ij}^\mathrm{(PC,PF)}\) of PF-PC synapses may be modifiable (i.e., they are depressed or potentiated), while synaptic strengths of all the other synapses are static. [Here, the index j for the PFs corresponds to the two indices (Mm) for GR cells representing the mth (\(1 \le m \le 50\)) cell in the Mth (\(1 \le M \le 2^{10}\)) GR cluster.] Synaptic plasticity at PF-PC synapses have been so much studied in many experimental (Ito et al. 1982; Ito and Kano 1982; Sakurai 1987; Ito 1989; De Schutter 1995; Chen and Thompson 1995; Wang et al. 2000; Lev-Ram et al. 2003; Coesmans et al. 2004; Steuber et al. 2007; Safo and Regehr 2008; Molnár 2014; Yang and Lisberger 2014; Gallimore et al. 2018) and computational (Albus 1971; Gerstner and van Hemmen 1992; Buonomano and Mauk 1994; Kenyon et al. 1998; Medina et al. 2000a; Yamazaki and Tanaka 2007; Roberts 2007; Achard and De Schutter 2008; Yamazaki and Nagao 2012; Bouvier et al. 2018) works.

As the time t is increased, synaptic strength \(J_{ij}^\mathrm{(PC,PF)}(t)\) for each PF-PC synapse is updated with the following multiplicative rule (depending on states) (Safo and Regehr 2008; Kim and Lim 2021):

$$\begin{aligned} J_{ij}^\mathrm{(PC,PF)}(t) \rightarrow J_{ij}^\mathrm{(PC,PF)}(t) + \varDelta J_{ij}^\mathrm{(PC,PF)}(t), \end{aligned}$$
(34)

where

$$\begin{aligned} \varDelta J_{ij}^\mathrm{(PC,PF)}(t)= & {} \varDelta \mathrm{LTD}_{ij}^{(1)}(t) + \varDelta \mathrm{LTD}_{ij}^{(2)}(t) + \varDelta \mathrm{LTP}_{ij}(t), \end{aligned}$$
(35)
$$\begin{aligned} \varDelta \mathrm{LTD}_{ij}^{(1)}(t)= & {} - \delta _{LTD} \cdot J_{ij}^\mathrm{(PC,PF)}(t) \cdot CF_{i}(t) \nonumber \\&\cdot \sum _{\varDelta t=0}^{\varDelta t_{r}^{*}} \varDelta J_{LTD}(\varDelta t), \end{aligned}$$
(36)
$$\begin{aligned} \varDelta \mathrm{LTD}_{ij}^{(2)}(t)= & {} - \delta _{LTD} \cdot J_{ij}^\mathrm{(PC,PF)}(t) \cdot [ 1- CF_{i}(t) ] \cdot PF_{ij}(t) \nonumber \\&\cdot D_{i}(t)\times \sum _{\varDelta t=0}^{\varDelta t_{l}^{*}} \varDelta J_{LTD} (\varDelta t), \end{aligned}$$
(37)
$$\begin{aligned} \varDelta \mathrm{LTP}_{ij}(t)= &\, {} \delta _{LTP} \cdot [J_{0}^\mathrm{(PC,PF)} - J_{ij}^\mathrm{(PC,PF)}(t)] \cdot [1-CF_{i}(t)] \nonumber \\&\cdot PF_{ij}(t)\times [1-D_{i}(t)]. \end{aligned}$$
(38)

Here, \(J_{0}^\mathrm{(PC,PF)}\) is the initial value (=0.006) for the synaptic strength of PF-PC synapses. Synaptic modification (LTD or LTP) occurs, depending on the relative time difference \(\varDelta t\) [= \(t_\mathrm{CF}\) (CF activation time) - \(t_\mathrm{PF}\) (PF activation time)] between the spiking times of the error-teaching instructor CF and the variously-recoded student PF. In Eqs. (36)-(38), \(CF_i(t)\) denotes a spike train of the CF signal coming into the ith PC. When \(CF_i(t)\) activates at a time t, \(CF_i(t)=1\); otherwise, \(CF_i(t)=0\). This instructor CF activation gives rise to LTD at PF-PC synapses in conjunction with earlier (\(\varDelta t >0)\) student PF activations in the range of \(t_\mathrm{CF} - \varDelta t_r^*< t_\mathrm{PF} <t_\mathrm{CF}\) (\(\varDelta t_r^* \simeq 277.5\) msec), which corresponds to the major LTD in Eq. (36).

We next consider the case of \(CF_i(t)=0\), which corresponds to Eqs. (37) and (38). Here, \(PF_{ij}(t)\) denotes a spike train of the PF signal from the jth pre-synaptic GR cell to the ith post-synaptic PC. When \(PF_{ij}(t)\) activates at time t, \(PF_{ij}(t)=1\); otherwise, \(PF_{ij}(t)=0\). In the case of \(PF_{ij}(t)=1\), PF firing may cause LTD or LTP, depending on the presence of earlier CF firings in an effective range. If CF firings exist in the range of \(t_\mathrm{PF} + \varDelta t_l^*< t_\mathrm{CF} <t_\mathrm{PF}\) (\(\varDelta t_l^* \simeq -117.5\) msec), \(D_i(t)=1\); otherwise \(D_i(t)=0\). When both \(PF_{ij}(t)=1\) and \(D_i(t)=1\), the PF activation causes another LTD at PF-PC synapses in conjunction with earlier (\(\varDelta t <0\)) CF activations [see Eq. (37)]. The probability for occurrence of earlier CF firings within the effective range is very low because mean firing rates of the CF signals (corresponding to output firings of individual IO neurons) are \(\sim\) 1.5 Hz (Mathy et al. 2009; Llinás 2014). Hence, this 2nd type of LTD is a minor one. In contrast, in the case of \(D_i(t)=0\) (i.e., absence of earlier associated CF firings), LTP occurs because of the PF firing alone [see Eq. (38)]. The update rate \(\delta _{LTD}\) for LTD in Eqs. (36) and (37) is 0.005, while the update rate \(\delta _{LTP}\) for LTP in Eqs. (38) is 0.0005 (=\(\delta _{LTD}/10\)) (Yamazaki and Nagao 2012).

Table 5 List of abbreviations

In the case of LTD in Eqs. (36) and (37), the synaptic modification \(\varDelta J_{LTD} (\varDelta t)\) changes depending on the relative time difference \(\varDelta t\) \((= t_\mathrm{CF} - t_\mathrm{PF}\)). We use the following time window for the synaptic modification \(\varDelta J_{LTD} (\varDelta t)\) (Safo and Regehr 2008; Kim and Lim 2021):

$$\begin{aligned} \varDelta J_{LTD}(\varDelta t) = A + B \cdot e^{-(\varDelta t -t_0)^2/\sigma ^2}, \end{aligned}$$
(39)

where \(A=-0.12\), \(B=0.4\), \(t_0 = 80\), and \(\sigma =180\). The time window for \(\varDelta J_{LTD} (\varDelta t)\) is well shown in Fig. 3 in Ref. (Kim and Lim 2021), where LTD occurs in an effective range of \(\varDelta t_l^*< \varDelta t < \varDelta t_r^*\). We note that a peak appears at \(t_0=80\) msec, and hence peak LTD takes place when PF firing precedes CF firing by 80 msec. A CF firing gives rise to LTD in association with earlier PF firings in the black region (\(0< \varDelta t < \varDelta t_r^*\)), and it also causes to another LTD in conjunction with later PF firings in the gray region (\(\varDelta t_l^*< \varDelta t <0\)). The effect of CF firing on earlier PF firings is much larger than that on later PF firings. However, outside the effective range (i.e., \(\varDelta t > \varDelta t_r^*\) or \(< \varDelta t_l^*\)), PF firings alone results in occurrence of LTP, because of absence of effectively associated CF firings.

Our refined rule for synaptic plasticity has the following advantages for the \(\varDelta \mathrm{LTD}\) in comparison with that in (Yamazaki and Tanaka 2007; Yamazaki and Nagao 2012). Our rule is based on the experimental result in (Safo and Regehr 2008). In the presence of a CF firing, a major LTD (\(\varDelta \mathrm{LTD}^{(1)}\)) occurs in conjunction with earlier PF firings in the range of \(t_\mathrm{CF} - \varDelta t_r^*< t_\mathrm{PF} <t_\mathrm{CF}\) (\(\varDelta t_r^* \simeq 277.5\) msec), while a minor LTD (\(\varDelta \mathrm{LTD}^{(2)}\)) takes place in conjunction with later PF firings in the range of \(t_\mathrm{CF}< t_\mathrm{PF} <t_\mathrm{CF} - \varDelta t_l^*\) (\(\varDelta t_l^* \simeq -117.5\) msec). The magnitude of LTD varies depending on \(\varDelta t\) (= \(t_\mathrm{CF}\) - \(t_\mathrm{PF}\)); a peak LTD occurs when \(\varDelta t =80\) msec. In contrast, the rule in (Yamazaki and Nagao 2012; Yamazaki and Tanaka 2007)considers only the major LTD in association with earlier PF firings in the range of \(t_\mathrm{CF} - 50< t_\mathrm{PF} <t_\mathrm{CF}\), the magnitude of major LTD is equal, independently of \(\varDelta t\), and minor LTD in conjunction with later PF firings is not considered. Outside the effective range of LTD, PF firings alone lead to LTP in both rules. However, we also note that some features of Pavlovian EBC were successfully reproduced by using the simple synaptic rule with only the major LTD in (Yamazaki and Tanaka 2007).

List of abbreviations

In Appendix C, we present a list of abbreviations which is shown in Table 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Lim, W. Influence of various temporal recoding on pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 15, 1067–1099 (2021). https://doi.org/10.1007/s11571-021-09673-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-021-09673-2

Keywords

Navigation