Skip to main content
Log in

Development of cosVMPT and Application of Creating 3D Neutronics Model for 360-Degree CFETR

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In order to conduct nuclear analyses for Chinese Fusion Engineering Testing Reactor (CFETR) according to the latest design, it is necessary to establish a 3D neutronics model based on the engineering CAD model. The 360-degree CFETR engineering CAD model is an extremely complex and huge model, with a large number of spline surfaces, flow channels, and overlaps, which puts forward higher requirements for the modeling and the conversion code. In this paper, the detailed modeling and conversion process is introduced, and a detailed 3D neutronics model for 360-degree CFETR is created by cosVMPT (Visual Modeling Platform for Particle Transport). Furthermore, considering the update and maintenance of the CAD model in the future, a new function of “User-Defined-Void” is developed in cosVMPT. The converted geometry is validated by comparing results of volume calculations by MCNP and CAD system. The result shows that the generated three-dimensional neutronics model is in good agreement with the original CAD model. This study demonstrates the capability of cosVMPT to be applied to the nuclear device with large scale complex geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.T. Song et al., IEEE. Trans. Plasma Sci. 42, 503 (2013). https://doi.org/10.1109/TPS.2014.2299277

    Article  ADS  Google Scholar 

  2. Y.T. Song et al., Fusion Eng. Des. 89, 2331 (2014). https://doi.org/10.1016/j.fusengdes.2014.03.045

    Article  Google Scholar 

  3. Y.X. Wan et al., Nucl. Fusion. 57, 102009 (2017). https://doi.org/10.1088/1741-4326/aa686a

    Article  ADS  Google Scholar 

  4. G. Zhuang et al., Nucl. Fusion. 59, 112010 (2019). https://doi.org/10.1088/1741-4326/ab0e27

    Article  ADS  Google Scholar 

  5. H. Tsige-Tamirat 2001, in On the use of CAD geometry for monte carlo particle transport. ed. by Andreas Kling, Fernando J. C. Baräo, Masayuki Nakagawa, Luis Távora, Pedro Vaz. Advanced monte carlo for radiation physics, particle transport simulation and applications. Springer, Berlin, Heidelberg, pp. 511-516. https://doi.org/10.1007/978-3-642-18211-2_81

  6. Wilson P P H, A , et al., "Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis." Fusion Engineering and Design(2010). https://doi.org/10.1016/j.fusengdes.2010.05.030

  7. L. Lei et al., Chin. J. Nucl. Sci. Eng. 27(3), 277–281 (2007). ((in Chinese))

    Google Scholar 

  8. Y. Li et al., Fusion Eng. Des. 82(15–24), 2861–2866 (2007). https://doi.org/10.1016/j.fusengdes.2007.02.022

    Article  Google Scholar 

  9. X. Jian et al., Chin. J. Nucl. Sci. Eng. 31(2), 162–168 (2011). ((in Chinese))

    Google Scholar 

  10. Ma. Xu-Bo et al., Atomic Energy Sci. Technol. 50, 2010 (2016). ((in Chinese))

    Google Scholar 

  11. Qiu R, et al. 2017. In 2017 25th International Conference on Nuclear Engineering: American Society of Mechanical Engineers. https://doi.org/10.1115/ICONE25-66550.

  12. H. Du et al., Fusion Eng. Des. 144, 57–61 (2019). https://doi.org/10.1016/j.fusengdes.2019.04.082

    Article  Google Scholar 

  13. S. Sato et al., Fusion Eng. Des. 85(7–9), 1546–1550 (2010). https://doi.org/10.1016/j.fusengdes.2010.04.038

    Article  Google Scholar 

  14. Ma Y, et al 2018, ICGG 2018-Proceedings of the 18th International Conference on Geometry and Graphics. https://doi.org/10.1007/978-3-319-95588-9_74.

  15. D. Große et al., Fusion Eng. Des. 88(9–10), 2210–2214 (2013). https://doi.org/10.1016/j.fusengdes.2013.02.146

    Article  Google Scholar 

  16. L. Lu et al., Fusion Eng. Des. 89(9–10), 1885–1888 (2014). https://doi.org/10.1016/j.fusengdes.2014.05.015

    Article  Google Scholar 

  17. L. Lu et al., Fusion Eng. Des. 124, 1269–1272 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.040

    Article  Google Scholar 

  18. R.A. Forster et al., Nucl. Instrum. Methods Phys. Res. 213(3), 82–86 (2004). https://doi.org/10.1016/S0168-583X(03)01538-6

    Article  ADS  Google Scholar 

  19. E. Brun et al., Ann. Nucl. Energy 82, 151–160 (2015). https://doi.org/10.1016/j.anucene.2014.07.053

    Article  Google Scholar 

  20. J. Allison et al., IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  21. H. Du et al., Fusion Eng. Des. 157, 111662 (2020). https://doi.org/10.1016/j.fusengdes.2020.111662

    Article  Google Scholar 

  22. S.L. Liu et al., Fusion Eng. Des. 89, 1380 (2014). https://doi.org/10.1016/j.fusengdes.2014.01.065

    Article  Google Scholar 

  23. S.L. Liu et al., Fusion Eng. Des. 124, 865 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.065

    Article  Google Scholar 

  24. J. Li et al., J. Fusion Energ. 39(1), 1–7 (2020). https://doi.org/10.1007/s10894-020-00233-w

    Article  Google Scholar 

  25. Paul P.H. Wilson, Timothy J. Tautges, Jason A. Kraftcheck, Brandon M. Smith, Douglass L. Henderson, Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis. Fusion Eng. Des.85(10–12), 1759–1765 (2010)

Download references

Acknowledgements

This work was supported by the financial support of National Key R&D Program of China [grant number 2017YFE0300501] and the Chinese National Natural Science Foundation [grant number 11775256].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Wu, Q., Lu, P. et al. Development of cosVMPT and Application of Creating 3D Neutronics Model for 360-Degree CFETR. J Fusion Energ 40, 2 (2021). https://doi.org/10.1007/s10894-021-00299-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-021-00299-0

Keywords

Navigation