Skip to main content

Advertisement

Log in

Enhancing Pinus pinea cone production by grafting in a non-native habitat

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Pinus pinea is an interesting species for its valued pine nuts. Despite the high demand for this nut, the species is mostly harvested from natural forests, because the time elapsed until the trees come into production hinders advances toward a more intensive cultivation. The grafting technique has been used to favor an earlier production in native Mediterranean habitats. In Chile, stone pine has been recently included in orchards. The objective of this study was to assess the initial performance in terms of growth, entry into production and cone yield of three grafting trials of the species established in Chile; two of the trials included nursery-grafted plants and the other, in situ grafting of P. pinea on a 3-year-old P. radiata plantation. An earlier entry into production and a higher number of female strobili and 1-year-old conelets (up to 2.9 times) were found in nursery-grafted plants compared with control seedlings. Growth was higher in trees in situ grafted onto radiata pine than in seedlings; eight years after grafting, the trees had achieved reproductive maturity, 67% had on average three cones per tree, and the presence of female strobili and 1-year-old conelets was 6.6 and 15.6 times higher than in seedlings, respectively. Radiata pine could be a feasible rootstock for either in-nursery or in situ stone pine grafting. Grafting accelerated stone pine entry into production, showing to be an effective tool for stone pine propagation and cropping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abellanas B, Pardos JA (1989) Seasonal development of female strobilus of Stone pine Pinus pinea L. Ann des Sci Forestières 46:S51–S53

    Article  Google Scholar 

  • Aletà N, Vilanova A. (2014) Cone production of stone pine grafted onto Allepo pine. 5th International Conference on Mediterranean Pines (Medpine5). Solsona, Spain

  • Baldini E (1986) Arboricoltura generale. Clueb, Bologna, Italy, p 404

    Google Scholar 

  • Bono D, Aleta N (2013) Cone yield evaluation of a grafted Pinus pinea L. trial. Options Méditerranéennes 105:35–42

    Google Scholar 

  • Butler I, Abellanas B, Monteagudo F, Bastida F, López J (1997) First results of a plot trial in agronomic grafting techniques in stone pine at the experimental farm “El Cebollar” (Moguer, Huelva). In Proceedings 2nd Spanish Forest Congress. pp. 99–104

  • Cabannes B (2015) Le pin pignon, une opportunité pour la forêt provençale. Forêt Méditerranéenne 36(1):37–48

    Google Scholar 

  • Carneiro A, D’Alpuim M, Vacas De Carvalho M (2007) Manual Ilustrado de Enxertia do Pinheiro Manso. Estación Florestal Nacional, Ministerio de Agricultura, Portugal

    Google Scholar 

  • Castaño J, Estirado M, Abellanas B, Butler I, Cosano I, Luengo J, García J, Candela J. (2004) Puesta en valor de los recursos forestales Mediterráneos. El injerto de pino piñonero (Pinus pinea L.). Manuales de Restauración Forestal No 9. Consejería de Medio Ambiente, Junta de Andalucía, Spain. 248 p

  • CEMAGREF (1982) Le Pin pignon. Forêt Méditerranéenne, IV 2:323–326

    Google Scholar 

  • Crawford M (1995) Nut pines. West Aust Nut Tree Crops Assoc Yearb 19:56–66

    Google Scholar 

  • Cutini A. (2002) Pines of silvicultural importance: Pinus pinea L. In Pines of silvicultural importance (pp. 329–342). New York: CABI Pub. Retrieved from https://books.google.cl/books/about/Pines_of_Silvicultural_Importance.html?id=DB8dCbmgQ74C&redir_esc=y

  • Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C. (2020) InfoStat version 2020. Retrieved from http://www.infostat.com.ar

  • Freire J, Tomé M, Constantino M. (2014) Optimization of grafted Stone pine stands installation. 5th International Conference on Mediterranean Pines (Medpine5) 22-26 September 2014. Solsona, Spain: s.n

  • Gallardo-Martín J, Gallardo de Prado J (1991) Cinco estudios sobre injertos en pino piñonero. Ecología 5:197–209

    Google Scholar 

  • Gárate J, Valeriano-Peñas C, Gutiérrez E. (2019) Radial growth response to climate change of populations of Pinus halepensis Mill., Pinus pinea L. and Pinus canariensis C. Sm. ex DC in the Collserola Natural Park (Barcelona). XXV IUFRO World Congress Forest Research and Cooperation for Sustainable Development, Curitiba, Brazil

  • Giertych M (1987) Seed orchards in crisis. Forest Ecol Manag 19(1):1–7. https://doi.org/10.1016/0378-1127(87)90005-3

    Article  Google Scholar 

  • Gordo J, Mutke S, Calama R, Gil L. (2011) El uso del pino piñonero en sistemas agroforestales. In: Jornada de Cultivos Alternativos con Especies Forestales. September 2011. Valladolid: Spain

  • Gordo J, Mutke S, Gil L. (2013) La relevancia de la especie de patrón porta injerto para el desarrollo de la copa y la producción de piña del pino piñonero injertado. In 4th Spanish Forest Congress. Vitoria-Gasteiz, Spain

  • Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, Koeffeman de Nooy A, van den Briel JP (2007) Development and application of bio-economic modelling to compare silvoarable, arable and forestry systems in three European countries. Ecol Eng 29:434–449

    Article  Google Scholar 

  • Greene D, Johnson E (2004) Modelling the temporal variation in the seed production of North American trees. Can. J. For. Res. 34:65–77

    Article  Google Scholar 

  • INC (International Nut and Dried Council) (2020) Statistical review: pine nuts. NUTFRUIT 79(1):82

    Google Scholar 

  • Lakatos F, Mirtchev S. (2014) Manual for Visual Assessment of Forest Crown Condition. FAO, pp. 17.

  • Loewe V, Delard C, Balzarini M, Álvarez A, Navarro R (2015) Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agr. Forest Meteorol 214–215:106–116. https://doi.org/10.1016/j.agrformet.2015.08.248

    Article  Google Scholar 

  • Loewe-Muñoz V, Balzarini M, Del Río R, Delard C. (2018) Plantation spacing effects on Stone pine (Pinus pinea L.) initial growth and conelet production entrance. New Forests, 50(3), 489-503.

  • Loewe-Muñoz V, Balzarini M, Delard C, Alvarez A (2019) Variability of stone pine Pinus pinea L fruit traits impacting pine nut yield. Ann For Sci https://doi.org/10.1007/s13595-019-0816-0

  • Loewe-Muñoz V, Delard C, Del Rio R, Balzarini M (2020) Long-term effect of fertilization on stone pine growth and cone production. Ann For Sci 77:69. https://doi.org/10.1007/s13595-020-00978-6

    Article  Google Scholar 

  • Marggraff G. (2014) White gold, the Tunisian pine nut value chain. 5th International Conference on Mediterranean Pines (Medpine5) 22-26 September 2014. Solsona, Spain: s.n

  • Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderkleinet D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27(3):463–473. https://doi.org/10.1093/treephys/27.3.463

    Article  PubMed  Google Scholar 

  • Meyer RS, Du Val AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414

    Article  Google Scholar 

  • Mutke S. (2011) Buscando nuevos futuros para las tierras agrarias: Análisis de las experiencias realizadas con pinares injertados. In Jornadas sobre pinar, pino, piña y piñón Piñonero. 3-4/11/2011. Córdoba, Spain

  • Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agr Forest Meteorol 132(3–4):263–272

    Article  Google Scholar 

  • Mutke S, Gordo J, Gil L. (2005a) Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. Silvae Genetica, 54(4), 189–197. Retrieved from https://www.researchgate.net/publication/290309307_Cone_yield_characterization_of_a_Stone_pine_Pinus_pinea_L_clone_bank

  • Mutke S, Iglesias S, Gil L (2007) Selección de clones de pino piñonero sobresalientes en la producción de piña. Invest Agrar Sist R 16(1):39–51

    Article  Google Scholar 

  • Mutke S, Calama R, Gordo J, Alvarez D, Gil L (2007) Stone pine orchards for nuts production: which, where, how? Nucis Newsl 14:22–25

    Google Scholar 

  • Mutke S, Gordo J, Calama R, Pique M, Bono D, Gil L, Montero G. (2011) Mediterranean pine nuts from agroforestry systems, an opportunity for rural development. In International meeting on Mediterranean stone pine for agroforestry (p. 6). Valladolid, Spain: Agropine 2011

  • Mutke S, Calama R, González S, Montero G, Gordo J, Bono D, Gil L. (2012) Mediterranean Stone Pine Botany and Horticulture. In J. Janick (Ed.), Horticultural Reviews 39 (pp. 153–201), Wiley Blackwell. https://doi.org/https://doi.org/10.1002/9781118100592

  • Mutke S, Bonet JA, Calado N, Calvo J, Taghouti I, Redondo C, Martinez de Arano I (2019) Innovation networks on Mediterranean non-wood forest products. Int J Innov Sci Eng Technol 3(1):1–10

    Google Scholar 

  • Mutke S, Vendramin GG, Fady B, Bagnoli F, González-Martínez SC. (2019a) Molecular and Quantitative Genetics of Stone Pine (Pinus pinea). In: Nandwani, D. (ed.), Genetic Diversity in Horticultural Plants. Series Sustainable Development and Biodiversity, 22: 61-84, ISBN 978-3-319-96453-9, Springer International Publishing

  • Nergiz C, Dönmez I. (2004) Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem., 86(3), 365–368. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.09.009

  • Nikkanen T, Velling P (1987) Correlations between flowering and some vegetative characteristics of grafts of Pinus sylvestris L. Forest Ecol Manag 19:35–40

    Article  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–54

    Article  Google Scholar 

  • Piqué M. (2004) La modelización forestal como base para la gestión y aprovechamiento sostenible de los montes de Pinus pinea L. de Cataluña. Rural Forest, 3, 8.

  • Piqué M, Ammari Y, Solano D, Aleta N, Bono D, Sghaier T, Garchi S, Coello J, Coll L, Mutke S (2013) Production and management of stone pine (Pinus pinea) for early nut production: grafted plantations as an alternative for restoring degraded areas and generating income in rural communities of Tunisia. Options Méditerranéennes 105:43–47

    Google Scholar 

  • Popova T, Hristova H. (2017) Trees of eternity-Pinus pinea L. in daily life, rituals, religion and symbolism. Archaeobotanical evidence from the territory of Bulgaria. J Archaeol. Sci. Reports, 5. https://doi.org/https://doi.org/10.1016/J.JASREP. 2017.06.012

  • Prada MA. (1999) Mejora genética de Pinus halepensis Mill. en la Comunidad Valenciana. Phd Thesis. ETSIM-UPM, Madrid, Spain

  • Ruguzova G, Pokhylchenko O, Ivanova I, Yaremchuk Y (2016) Some features of Pinus pumila Pall Reg and Pinus armandii Fanch seed formation in the conditions of introduction. Agr Forestry 62(4):203–212

    Google Scholar 

  • Segura R, Javierre C, Lizarraga M, Ros E (2006) Other relevant components of nuts, phytosterols, folate and minerals. Br J Nutr 96(2):S36–S44. https://doi.org/10.1017/BJN20061862

    Article  PubMed  Google Scholar 

  • Sghaier T, Othmani H, Ammari Y. (2012) Production and management of stone pine (Pinus pinea) for early nut production: grafted plantations as an alternative for restoring degraded areas and generating income in rural communities of Tunisia. Conference Bilateral Cooperation Project Tunisia-Spain. June 2012

  • Singh RV, Mahajan NM. (1967) Grafting in conifers in Himachal Pradesh, India. Forestry Research Institute & Colleges. In 11th Silvicultural Conference (pp. 294-298). Dehradun, India

  • Stroup W (2012) Generalized linear mixed models: modern concepts. CRC Press, Florida, US, Methods and Applications

    Google Scholar 

  • Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford DR (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 4:200–215

    Article  Google Scholar 

  • Vanhanen L, Savage G. (2013) Mineral analysis of Pine nuts (Pinus spp.) grown in New Zealand. Foods, 2 (143–150). https://doi: 10.3390/foods2020143

  • West B, Welch K, Galecki A (2014) Linear mixed models: a practical guide using statistical software, 2nd edn. CRC Press, New York, US

    Book  Google Scholar 

  • Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully N, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 20(544):357–361

    Article  Google Scholar 

  • White T, Duryea M, Powell G. (1997) Genetically Improved Pines for Reforesting Florida’s Timberlands. CIR1190. Gainesville: University of Florida Institute of Food and Agricultural Sciences. Retrieved from https://www.researchgate.net/publication/290309307_Cone_yield_characterization_of_a_Stone_pine_Pinus _pinea_L_clone_bank https://edis.ifas.ufl.edu/pdffiles/FR/FR00700.pdf

Download references

Acknowledgements

The authors thank Ramón Mella, Silvesco S.A. and Sociedad Agrícola Morel Morel for providing the land for trial establishment, and for taking care of the trials.

Funding

Trials were established and maintained via the projects “The edible pine nut of stone pine, an attractive business for Chile” funded by INNOVA, CORFO (07CT9 IUM-51) (2008–2012) and “Technique development for producing stone pine (Pinus pinea) pine nuts, an attractive commercial option for Chile”, funded by FONDEF, CONICYT (D11I1134) (2012-2016). The Chilean Ministry of Agriculture funded measurements and analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Loewe-Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loewe-Muñoz, V., Del Río, R., Delard, C. et al. Enhancing Pinus pinea cone production by grafting in a non-native habitat. New Forests 53, 37–55 (2022). https://doi.org/10.1007/s11056-021-09842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-021-09842-5

Keywords

Navigation