Skip to main content
Log in

Thermal Decomposition Kinetics of Siderite Ore during Magnetization Roasting

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The non-isothermal magnetization roasting process and isothermal magnetization roasting process of siderite ore were investigated using thermogravimetric (TG) analysis and a real-time infrared gas analyzer. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were used to analyze the characteristics of samples. The results showed that the decomposition degree and decomposition rate of siderite ore were vitally affected by heating rate and roasting temperature. It was determined that A1 reaction model (f(α) = 1 − α) and A3/2 reaction model (f(α) = (3/2)(1 − α)[−ln(1 − α)]1/2) were the most probable mechanism function of the non-isothermal decomposition process and isothermal decomposition process, respectively. The phase transformation and decomposition mechanism during the roasting process were evaluated. Siderite decomposed in the process of magnetization roasting, released CO and CO2, and transformed into strongly magnetic magnetite. The SEM images highlighted that as the decomposition progressed, the structure of roasted samples was destroyed, and an increasing number of cracks and pores emerged on the surface, which is advantageous to the following grinding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sun Y, Han Y, Gao P, Wei X, Li G (2015) Thermogravimetric study of coal-based reduction of oolitic iron ore: kinetics and mechanisms. Int J Min Process 143:87–97. https://doi.org/10.1016/j.minpro.2015.09.005

    Article  Google Scholar 

  2. Zhang X, Han Y, Sun Y, Li Y (2019) Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot-scale study. Powder Technol 352:16–24. https://doi.org/10.1016/j.powtec.2019.04.042

    Article  Google Scholar 

  3. Sun Y, Gao P, Han Y, Ren D (2013) Reaction behavior of Iron minerals and metallic Iron particles growth in coal-based reduction of an Oolitic Iron ore. Indust Eng Chem Res 52(6):2323–2329. https://doi.org/10.1021/ie303233k

    Article  Google Scholar 

  4. Tang Z, Gao P, Sun Y, Han Y, Li E, Chen J, Zhang Y (2020) Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting. Powder Technol 360:649–657. https://doi.org/10.1016/j.powtec.2019.09.092

    Article  Google Scholar 

  5. Zhao Q, Xue J, Chen W (2019) Upgrading of iron concentrate by fluidized-bed magnetizing roasting of siderite to magnetite in CO–H2–N2 atmosphere. Trans Indian Institute Metals 72(5):1381–1391. https://doi.org/10.1007/s12666-019-01636-w

    Article  Google Scholar 

  6. Zhao Q, Xue J, Chen W (2020) Mechanism of improved magnetizing roasting of siderite–hematite iron ore using a synergistic CO–H2 mixture. J Iron Steel Res Int 27(1):12–21. https://doi.org/10.1007/s42243-019-00242-w

  7. Luo Y, Zhu D, Pan J, Zhou X (2016) Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Min Process Extract Metallurgy 125(1):17–25. https://doi.org/10.1080/03719553.2015.1118213

    Article  Google Scholar 

  8. Yu J, Han Y, Li Y, Gao P (2017) Beneficiation of an iron ore fines by magnetization roasting and magnetic separation. Int J Min Process 168:102–108. https://doi.org/10.1016/j.minpro.2017.09.012

  9. Yuan S, Zhou W, Han Y, Li Y (2019) Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation. Separation Sci Technol 55(18):3427–3437. https://doi.org/10.1080/01496395.2019.1677715

  10. Roy SK, Nayak D, Dash N, Dhawan N, Rath SS (2020) Microwave-assisted reduction roasting—magnetic separation studies of two mineralogically different low-grade iron ores. Int J Min Metallurgy Mater 27(11):1449–1461. https://doi.org/10.1007/s12613-020-1992-5

    Article  Google Scholar 

  11. Li Y, Wang R, Han Y, Wei X (2015) Phase transformation in suspension roasting of oolitic hematite ore. J Central South Univ 22(12):4560–4565. https://doi.org/10.1007/s11771-015-3006-8

    Article  Google Scholar 

  12. Yu J, Han Y, Li Y, Gao P, Sun Y (2017) Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation. Separation Sci Technol 52(10):1768–1774. https://doi.org/10.1080/01496395.2017.1296867

    Article  Google Scholar 

  13. Chun T, Zhu D, Pan J (2015) Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores. Min Process Extract Metallurgy Rev 36(4):223–226. https://doi.org/10.1080/08827508.2014.928620

    Article  Google Scholar 

  14. Celikdemir M, Sarikaya M, Depci T, Aydogmus R (2016) Influence of microwave heating and thermal auxiliary on decomposition of siderite. IOP Conf Ser: Earth Environ Sci 44:052002. https://iopscience.iop.org/article/10.1088/1755-1315/44/5/052002

  15. Sun Y, Zhu X, Han Y, Li Y (2019) Green magnetization roasting technology for refractory iron ore using siderite as a reductant. J Cleaner Product 206:40–50. https://doi.org/10.1016/j.jclepro.2018.09.113

    Article  Google Scholar 

  16. Zhang Q, Sun Y, Han Y, Li Y (2020) Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting. J Cleaner Product 268:122173. https://doi.org/10.1016/j.jclepro.2020.122173

  17. Zhu X, Han Y, Sun Y, Li Y, Wang H (2020) Siderite as a novel reductant for clean utilization of refractory iron ore. J Cleaner Product 245:118704. https://doi.org/10.1016/j.jclepro.2019.118704

    Article  Google Scholar 

  18. Zhu D, Luo Y, Pan J, Zhou X (2016) Reaction mechanism of siderite lump in coal-based direct reduction. High Temp Mater Process 35(2):185–194. https://doi.org/10.1515/htmp-2014-0176

    Article  Google Scholar 

  19. Zhang X, Han Y, Li Y, Sun Y (2017) Effect of heating rate on pyrolysis behavior and kinetic characteristics of siderite. Minerals 7(11):211. https://doi.org/10.3390/min7110211

    Article  Google Scholar 

  20. Jagtap S, Pande A, Gokarn A (1992) Kinetics of thermal decomposition of siderite: effect of particle size. Int J Min Process 36(1–2):113–124. https://doi.org/10.1016/0301-7516(92)90068-8

    Article  Google Scholar 

  21. Zakharov VY, Adonyi Z (1986) Thermal decomposition kinetics of siderite. Thermochim Acta 102:101–107. https://doi.org/10.1016/0040-6031(86)85318-7

    Article  Google Scholar 

  22. Alkac D, Atalay Ü (2008) Kinetics of thermal decomposition of Hekimhan–Deveci siderite ore samples. Int J Min Process 87(3–4):120–128. https://doi.org/10.1016/j.minpro.2008.02.007

    Article  Google Scholar 

  23. Gotor FJ, Macias M, Ortega A, Criado JM (2000) Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Physics Chem Min 27(7):495–503. https://doi.org/10.1007/s002690000093

    Article  Google Scholar 

  24. Yuan S, Zhou W, Han Y, Li Y (2020) Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation. Separation Sci Technol 55(18):3427–3437. https://doi.org/10.1080/01496395.2019.1677715

    Article  Google Scholar 

  25. Ponomar V, Dudchenko N, Brik A (2017) Phase transformations of siderite ore by the thermomagnetic analysis data. J Magnetism Magnetic Mater 423:373–378. https://doi.org/10.1016/j.jmmm.2016.09.124

    Article  Google Scholar 

  26. Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82(6):064110. https://doi.org/10.1103/PhysRevB.82.064110

    Article  Google Scholar 

  27. Ponomar VP, Dudchenko NO, Brik AB (2018) Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores. Minerals Eng 122:277–284. https://doi.org/10.1016/j.mineng.2018.04.018

    Article  Google Scholar 

  28. Sun Y, Han Y, Wei X, Gao P (2016) Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Thermal Anal Calorimetry. https://doi.org/10.1007/s10973-015-4863-y

  29. Budrugeac P, Petre AL, Segal E (1996) Some problems concerning the evaluation of non-isothermal kinetic parameters: solid-gas decompositions from thermogravimetric data. J Thermal Anal Calorimetry 47(1):123–134. https://doi.org/10.1007/bf01982692

    Article  Google Scholar 

  30. Škvára F, Šesták J (1975) Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. J Thermal Anal Calorimetry 8(3):477–489. https://doi.org/10.1007/BF01910127

    Article  Google Scholar 

  31. Yu J, Han Y, Li Y, Gao P, Li W (2017) Mechanism and kinetics of the reduction of hematite to magnetite with CO–CO2 in a micro-fluidized bed. Minerals 7(11):209

  32. Dhupe A, Gokarn A (1990) Studies in the thermal decomposition of natural siderites in the presence of air. Int J Mineral Process 28(3–4):209–220. https://doi.org/10.1016/0301-7516(90)90043-X

    Article  Google Scholar 

  33. Van Siclen CD (1996) Random nucleation and growth kinetics. Phys Rev B 54(17):11845–11848. https://doi.org/10.1103/PhysRevB.54.11845

    Article  Google Scholar 

  34. Zhang Q, Sun Y, Han Y, Li Y, Gao P (2020) Effect of thermal oxidation pretreatment on the magnetization roasting and separation of refractory iron ore. Mineral Process Extractive Metallurgy Rev. https://doi.org/10.1080/08827508.2020.1837126

Download references

Funding

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 51874071, 51734005), the Fok Ying Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 161045), and Liao Ning Revitalization Talents Program (XLYC1807111).

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhang: data curation, formal analysis, validation, writing – original draft. Yongsheng Sun: conceptualization, funding acquisition, resources, writing – review & editing. Yuexin Han: data curation, funding acquisition, project administration, resources. Peng Gao: data curation, resources, supervision. Yanjun Li: Data curation, resources, supervision.

Corresponding author

Correspondence to Yongsheng Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Sun, Y., Han, Y. et al. Thermal Decomposition Kinetics of Siderite Ore during Magnetization Roasting. Mining, Metallurgy & Exploration 38, 1497–1508 (2021). https://doi.org/10.1007/s42461-021-00417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00417-8

Keywords

Navigation