Skip to main content
Log in

The role of information aggregators in tax compliance

  • Published:
International Tax and Public Finance Aims and scope Submit manuscript

Abstract

Fifty-six percent of the US taxpaying population uses a paid tax preparer, but the effect of these tax preparation services on tax compliance is not well understood. Although governments conceal the algorithms they use to determine which taxpayers to audit, tax preparation firms with large client bases may be able to infer these algorithms and therefore offer strategic advice to taxpayers. This paper formalizes this role, using a simple asymmetric information model where agents can purchase information about the government’s enforcement rules. In a competitive market for tax preparation services, demand for tax preparers is selective and increases in taxpayer income. Moreover, the presence of tax preparers always reduces compliance when tax preparers have perfect information. Perhaps surprisingly, if the demand for strategic advice is high enough, the government can mitigate evasion by revealing full information about its audit rule. Alternatively, when the tax preparers have imperfect information about the audit rule, if the top income within an audit class is low enough, the government can utilize tax preparer firms to increase compliance by influencing the audit information available to these firms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the past, IRS has been pressured to reveal this scoring formula. In one recent example, a taxpayer sued to compel the Service to disclose the formula under the Freedom of Information Act, the court ultimately ruled in favor of the tax agency.

  2. For example, an audit class can be all doctors living in the Detroit metropolitan area. Then, a cutoff rule might dictate auditing all doctors living in the Detroit metropolitan area who report below \(\$50,000\).

  3. The hazard function in this context is \(\frac{1-F(y)}{f(y)}\), where F(y) represents the income distribution.

  4. In the USA, the penalty is indeed levied on the amount of evaded tax. Many theoretical models, including the canonical work of Allingham and Sandmo (1972), assume that the penalty is proportional to the undeclared income. If this is the case, the effect of the marginal tax rate on evasion is driven by opposing substitution and income effects. If the penalty is on the evaded tax, the substitution effect vanishes. See Yitzhaki (1974) for a detailed analysis.

  5. Note again that firms know the cutoff, and the agents know this.

  6. These cutoffs are actually functions of marginal cost but I simplify by suppressing the notation.

  7. These variables also affect the self-reported income; however, even though the direct effect matters for individuals who report \({\overline{\beta }}\), the effect on \(r^*\) is irrelevant due to the envelope theorem.

  8. Given a cutoff all taxpayers with income above that cutoff will demand tax preparation services which in turn implies that aggregate demand decreases with cutoffs, \({\overline{y}}\) is the highest demand cutoff in the model.

  9. As mentioned, the audit rule may not be optimal due to the information asymmetry present in this setting. Therefore, one should be aware that the analysis here is positive in the sense that it only looks at what happens if the government reveals the cutoff rule.

  10. Note that this analysis assumes tax compliance is the final goal of the tax authority. The results can be extended to the case where the tax authority is interested in maximizing tax revenue when audits are costly enough that the government would rather individuals comply than catch them evading.

  11. This is generally true in the absence of credits. For example, claiming credits like EITC might cause the tax return to become quite complicated for low levels of income.

  12. This modification can also be interpreted as taxpayers incurring an additional cost when they hire a firm in addition to the fee they pay.

  13. As both firm and taxpayer beliefs are centered around \(\omega \), \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}=\frac{\overline{\beta }_f+\underline{\beta }_f}{2}\), the difference between \(\underline{\beta }_f\) and \(\underline{\beta }\) should be the same as the difference between \(\overline{\beta }\) and \(\overline{\beta }_f\).

  14. Recall we already made the assumption \(m>{\overline{y}}=2\overline{\beta }-\underline{\beta }\) at the beginning of the model section.

References

  • Allingham, M. G., & Sandmo, A. (1972). Income tax evasion: A theoretical analysis. Journal of Public Economics, 1(3–4), 323–338.

    Article  Google Scholar 

  • Dubin, J. A., Graetz, M. J., Udell, M. A., & Wilde, L. L. (1992). The demand for tax return preparation services. The Review of Economics and Statistics (pp. 75–82).

  • Erard, B. (1993). Taxation with representation: An analysis of the role of tax practitioners in tax compliance. Journal of Public Economics, 52(2), 163–197.

    Article  Google Scholar 

  • Erard, B. (1997). Self-selection with measurement errors a microeconometric analysis of the decision to seek tax assistance and its implications for tax compliance. Journal of Econometrics, 81(2), 319–356.

    Article  Google Scholar 

  • Fleischman, G. M., & Stephenson, T. (2012). Client variables associated with four key determinants of demand for tax preparer services: An exploratory study. Accounting Horizons, 26(3), 417–437.

    Article  Google Scholar 

  • Hansen, V. J., & White, R. A. (2012). An investigation of the impact of preparer penalty provisions on tax preparer aggressiveness. Journal of the American Taxation Association, 34(1), 137–165.

    Article  Google Scholar 

  • Klepper, S., & Nagin, D. (1989). The role of tax preparers in tax compliance. Policy Sciences, 22(2), 167–194.

    Article  Google Scholar 

  • Klepper, S., Mazur, M., & Nagin, D. (1991). Expert intermediaries and legal compliance: The case of tax preparers. The Journal of Law and Economics, 34(1), 205–229.

    Article  Google Scholar 

  • Long, J. E., & Caudill, S. B. (1987). The usage and benefits of paid tax return preparation. National Tax Journal (pp. 35–46).

  • Marchese, C., Venturini, A., et al (2019) Tax preparers and tax evasion: Punishing tax payers or tax preparers? FinanzArchiv: Public Finance Analysis (pp. 1–24).

  • Reinganum, J. F., & Wilde, L. L. (1985). Income tax compliance in a principal-agent framework. Journal of Public Economics, 26(1), 1–18.

    Article  Google Scholar 

  • Reinganum, J. F., & Wilde, L. L. (1988). A note on enforcement uncertainty and taxpayer compliance. The Quarterly Journal of Economics, 103(4), 793–798.

    Article  Google Scholar 

  • Reinganum, J. F., & Wilde, L. L. (1991). Equilibrium enforcement and compliance in the presence of tax practitioners. Journal of Law, Economics, & Organization, 7(1), 163–181.

    Google Scholar 

  • Sanchez, I., & Sobel, J. (1993). Hierarchical design and enforcement of income tax policies. Journal of Public Economics, 50(3), 345–369.

    Article  Google Scholar 

  • Scotchmer, S. (1987). Audit classes and tax enforcement policy. The American Economic Review, 77(2), 229–233.

    Google Scholar 

  • Scotchmer, S. (1989). Who profits from taxpayer confusion? Economics Letters, 29(1), 49–55.

    Article  Google Scholar 

  • Slemrod, J. (1989). The return to tax simplification: An econometric analysis. Public Finance Quarterly, 17(1), 3–27.

    Article  Google Scholar 

  • Slemrod, J., & Sorum, N. (1984). The compliance cost of the us individual income tax system.

  • Yitzhaki, S. (1974). Income tax evasion: A theoretical analysis. Journal of Public Economics, 3(2), 201–202.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Joel Slemrod, James Hines Jr., David Miller, Yusufcan Masatlıoğlu, and John Leahy for helpful discussions, feedback, and support. I thank two anonymous referees, John Guyton, and the seminar participants at the National Tax Association annual meeting, the International Institute of Public Finance annual congress, and the University of Michigan, for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yeliz Kaçamak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this section, I will provide details about omitted proofs and some of the equations.

The following inequality is always true in this model:

$$\begin{aligned} 0<\underline{\beta }<\omega<y_{\omega }={\overline{\beta }}<{\overline{y}}=2\overline{\beta }-\underline{\beta }<m \end{aligned}$$
(30)

1.1 A.1 Agent’s problem

\(EI_{dif}\) increases with income.

$$\begin{aligned}&EI_{dif}= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ \frac{t \left( y-\underline{\beta }\right) ^2}{4 \left( \overline{\beta }-\underline{\beta }\right) } &{} \underline{\beta } \le y<\overline{\beta } \\ -\frac{t \left( 2 \overline{\beta }^2-\underline{\beta }^2-4 y \overline{\beta }+2 y \underline{\beta }+y^2\right) }{4 \left( \overline{\beta }-\underline{\beta }\right) } &{} \overline{\beta } \le y<{\overline{y}} \\ \frac{1}{2} t \left( \overline{\beta }-\underline{\beta }\right) &{} {\overline{y}} \le y \\ \end{array}\right. } \end{aligned}$$
(31)
$$\begin{aligned}&\frac{\partial EI_{dif}}{ \partial y}= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ \frac{t \left( y-\underline{\beta }\right) }{2 \left( \overline{\beta }-\underline{\beta }\right) } &{} \underline{\beta }\le y<\overline{\beta } \\ \frac{t \left( 2 \overline{\beta }-\underline{\beta }-y\right) }{2 \left( \overline{\beta }-\underline{\beta }\right) } &{} \overline{\beta } \le y<{\overline{y}} \\ 0 &{} {\overline{y}}<y\\ \end{array}\right. } \end{aligned}$$
(32)

Derivatives in all intervals are positive since \(\overline{\beta }>y>\underline{\beta }\).

1.2 A.2 Demand

\(y_d(c)\) is continuous in c.

$$\begin{aligned} y_d(c)= {\left\{ \begin{array}{ll} y_{y}=\underline{\beta }+\frac{2\sqrt{ct(\overline{\beta }-\underline{\beta })}}{t} \quad &{}\text {if } \ 0\le c \le \frac{t}{4}(\overline{\beta }-\underline{\beta })\\ y_{{\overline{\beta }}}=2\overline{\beta }-\underline{\beta }-\frac{\sqrt{2t((\overline{\beta }-\underline{\beta })(2t(\overline{\beta }-\underline{\beta })-2c)}}{t} &{}\text {if } \ \frac{t}{4}(\overline{\beta }-\underline{\beta })\le c \le \frac{1}{2}({\overline{\beta }}-{\underline{\beta }})t\\ m &{}\text {if } \ c > \frac{1}{2}({\overline{\beta }}-{\underline{\beta }})t \end{array}\right. } \end{aligned}$$
(33)

It is obvious that each cutoff function is continuous in c. Then, showing that the cutoffs do not jump at the boundaries is enough. Plugging in c at each boundary point will yield the following:

$$\begin{aligned} y_d(c)= {\left\{ \begin{array}{ll} y_y=y_{\overline{\beta }}=\overline{\beta } &{}\text {if} \ c=\frac{t}{4}(\overline{\beta }-\underline{\beta })\\ y_{\overline{\beta }}={\overline{y}} &{}\text {if} \ c=\frac{1}{2}({\overline{\beta }}-{\underline{\beta }})t \end{array}\right. } \end{aligned}$$
(34)

1.2.1 A.2.1 Comparative statics

In this section, I will analyze the comparative statics of the demand. As the demand thresholds are determined where \(EI_{dif}(y)-c=0\), implicit function theorem can be utilized to locally analyze how thresholds vary with respect to the parameters of the model.

Derivative of \(EI_{dif}\) with respect to \({\underline{\beta }}\):

$$\begin{aligned} \frac{\partial EI_{dif}}{\partial {\underline{\beta }}}= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ \frac{t \left( y-\underline{\beta }\right) \left( -2 \overline{\beta }+\underline{\beta }+y\right) }{4 \left( \overline{\beta }-\underline{\beta }\right) ^2} &{} \underline{\beta }\le y<\overline{\beta } \\ -\frac{t \left( 2 \overline{\beta }^2+\underline{\beta }^2-2 \overline{\beta } \left( \underline{\beta }+y\right) +y^2\right) }{4 \left( \overline{\beta }-\underline{\beta }\right) ^2} &{} \overline{\beta }\le y<{\overline{y}} \\ -\frac{t}{2} &{} {\overline{y}}<y \\ \end{array}\right. } \end{aligned}$$
(35)

Derivative of thresholds with respect to \(\underline{\beta }\)

$$\begin{aligned} \frac{\partial y_d(c)}{\partial {\underline{\beta }}}=-\frac{\frac{\partial EI_{dif}}{\partial {\underline{\beta }}}}{\frac{\partial EI_{dif}}{\partial y}}= {\left\{ \begin{array}{ll} \frac{2 \overline{\beta }-\underline{\beta }-y}{2 (\overline{\beta }- \underline{\beta })} &{}\underline{\beta }\le y<\overline{\beta } \\ \frac{1}{2}+\frac{(y-\overline{\beta })(y+\underline{\beta })}{2 \left( \overline{\beta }-\underline{\beta }\right) \left( 2 \overline{\beta }-\underline{\beta }-y\right) }&{} \overline{\beta }<y<{\overline{y}} \\ \end{array}\right. } \end{aligned}$$
(36)

Note that as \(2\overline{\beta }-\underline{\beta }={\overline{y}}\), the thresholds always increase, when \(\underline{\beta }\) increases. As demand decreases when the threshold increases, an increase in \(\underline{\beta }\) has a negative effect on the demand.

Derivative of \(EI_{dif}\) with respect to \({\overline{\beta }}\):

$$\begin{aligned} \frac{\partial EI_{dif}}{\partial {\overline{\beta }}}= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ -\frac{t \left( y-\underline{\beta }\right) ^2}{4 \left( \overline{\beta }-\underline{\beta }\right) ^2} &{} \underline{\beta }\le y<\overline{\beta } \\ \frac{t \left( -2 \overline{\beta }^2+4 \overline{\beta } \underline{\beta }-\underline{\beta } \left( \underline{\beta }+2 y\right) +y^2\right) }{4 \left( \overline{\beta }-\underline{\beta }\right) ^2}&{} \overline{\beta }\le y<{\overline{y}} \\ \frac{t}{2} &{} {\overline{y}}<y \\ \end{array}\right. } \end{aligned}$$
(37)

Derivative of thresholds with respect to \(\overline{\beta }\)

$$\begin{aligned} \frac{\partial y_d(c)}{\partial {\overline{\beta }}}=-\frac{\frac{\partial EI_{dif}}{\partial {\overline{\beta }}}}{\frac{\partial EI_{dif}}{\partial y}}= {\left\{ \begin{array}{ll} \frac{y-\underline{\beta }}{2( \overline{\beta }-\underline{\beta })} &{} \underline{\beta }\le y<\overline{\beta } \\ \frac{1}{2}-\frac{(y-\overline{\beta })(y+\underline{\beta })}{2 \left( \overline{\beta }-\underline{\beta }\right) \left( 2 \overline{\beta }-\underline{\beta }-y\right) }&{} \overline{\beta }<y<{\overline{y}} \\ \end{array}\right. } \end{aligned}$$
(38)

The equation when the threshold falls in the interval \([\underline{\beta },\overline{\beta })\) is positive, which implies that as \(\overline{\beta }\) increases the demand for preparation services should fall. However, if the threshold is in the interval \([\overline{\beta },{\overline{y}})\), the sign is ambiguous. If the threshold is lower than \(\sqrt{2}\left( \overline{\beta }-\underline{\beta }\right) +\underline{\beta }\), an increase in \(\overline{\beta }\) has a negative effect on demand, whereas, once the threshold exceeds this level, the effect switches signs and become positive. Derivative of \(EI_{dif}\) with respect to t:

$$\begin{aligned} \frac{\partial EI_{dif}}{\partial t}= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ \frac{\left( y-\underline{\beta }\right) ^2}{4 \left( \overline{\beta }-\underline{\beta }\right) } &{} \underline{\beta }\le y<\overline{\beta } \\ -\frac{2 \overline{\beta }^2-\underline{\beta }^2-4 y \overline{\beta }+2 y \underline{\beta }+y^2}{4 \overline{\beta }-4 \underline{\beta }} &{} \overline{\beta }\le y<{\overline{y}} \\ \frac{1}{2} \left( \overline{\beta }-\underline{\beta }\right) &{} {\overline{y}}<y \\ \end{array}\right. } \end{aligned}$$
(39)

Derivative of thresholds with respect to t

$$\begin{aligned} \frac{\partial y_d(c)}{\partial t}=-\frac{\frac{\partial EI_{dif}}{\partial t}}{\frac{\partial EI_{dif}}{\partial y}}= {\left\{ \begin{array}{ll} - \frac{y-\underline{\beta }}{2 t} &{} \underline{\beta }\le y<\overline{\beta } \\ \frac{-2 \overline{\beta }^2+\underline{\beta }^2+4 y \overline{\beta }-2 y \underline{\beta }-y^2}{2 t \left( -2 \overline{\beta }+\underline{\beta }+y\right) } &{} \overline{\beta }\le y<{\overline{y}} \\ \end{array}\right. } \end{aligned}$$
(40)

The first expression in the above function is negative; therefore, as the tax rate increases, demand for tax preparers also increases. The second expression is also negative. To see this, first, notice that the denominator of this expression is negative as \(2\overline{\beta }-\underline{\beta }=\overline{\beta }>y\). Also, notice that the numerator increases in y; therefore, the lowest possible value the numerator can take is when \(y=\overline{\beta }\). Plugging in this value boils the numerator down to \(2(\overline{\beta }-\underline{\beta })^2>0\). Consequently, the demand for tax preparers unambiguously increases as the tax rate rises.

Derivative of \(EI_{dif}\) with respect to \(({\overline{\beta }} -{\underline{\beta }})\): To do this, define \({\overline{\beta }}=\omega +\epsilon \) and \({\underline{\beta }}=\omega -\epsilon \) and take derivatives with respect to \(\epsilon \)

$$\begin{aligned} \frac{\partial EI_{dif}}{\partial \epsilon }= {\left\{ \begin{array}{ll} 0 &{} y<\underline{\beta } \\ \frac{t (\epsilon +y-\omega ) (\epsilon -y+\omega )}{8 \epsilon ^2} &{} \underline{\beta }\le y<\overline{\beta } \\ -\frac{t (\epsilon +y-\omega ) (\epsilon -y+\omega )}{8 \epsilon ^2} &{} \overline{\beta }\le y<{\overline{y}} \\ t &{} {\overline{y}}<y \\ \end{array}\right. } \end{aligned}$$
(41)

Derivative of thresholds with respect to \(\epsilon \), where I substitute \(\epsilon =\frac{\overline{\beta }-\underline{\beta }}{2}\) and \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial y_d(c)}{\partial \epsilon }=-\frac{\frac{\partial EI_{dif}}{\partial \epsilon }}{\frac{\partial EI_{dif}}{\partial y}}= {\left\{ \begin{array}{ll} \frac{y-\overline{\beta }}{\overline{\beta }-\underline{\beta }} &{} \underline{\beta }\le y<\overline{\beta } \\ \frac{\left( y-\overline{\beta }\right) \left( y-\underline{\beta }\right) }{\left( \overline{\beta }-\underline{\beta }\right) \left( -2 \overline{\beta }+\underline{\beta }+y\right) }&{} \overline{\beta }\le y<{\overline{y}} \\ \end{array}\right. } \end{aligned}$$
(42)

1.3 A.3 Ex post compliance

1.3.1 A.3.1 Evasion

Lemma 2:

Proof

As 1 explains, the two candidates for lowest possible change in evasion compared to the case where all taxpayers self-prepare are: (i) where all taxpayers hire a firm; (ii) with the smallest positive demand possible, i.e., where the demand cutoff is at \(\overline{\beta }\).

Total reported income in (i) is

$$\begin{aligned} \begin{aligned} RI(\underline{\beta })&=\int _{0}^{\omega }ydy+\int _{\omega }^{m}\omega dy \\&=\frac{1}{8} \left( \overline{\beta }+\underline{\beta }\right) \left( -\overline{\beta }-\underline{\beta }+4 m\right) >0 \end{aligned} \end{aligned}$$
(43)

Total reported income in (ii) is

$$\begin{aligned} RI({\overline{y}})&=\int _0^{\underline{\beta }} y \, dy+\int _{\underline{\beta }}^{{\overline{y}}} r \, dy+\int _{{\overline{y}}}^m \omega \, dy\nonumber \\&=\frac{1}{2} \left( \overline{\beta } \left( m-\underline{\beta }\right) +m \underline{\beta }\right) \end{aligned}$$
(44)
$$\begin{aligned} RI({\overline{y}})-RI(\underline{\beta })&=\int _{\underline{\beta }}^{\omega } (y-r) \, dy+\int _{\omega }^{\overline{\beta }} (\omega -r) \, dy\nonumber \\&=\frac{1}{8} \left( \overline{\beta }-\underline{\beta }\right) ^2>0 \end{aligned}$$
(45)

Therefore, aggregate reported income when \(y_d=\overline{\beta }\) is higher than the aggregate reported income when everyone hires a firm. \(\square \)

Proposition 2:

Proof

Case 1

$$\begin{aligned} RI(y_{\omega })&=\int _0^{\underline{\beta }} y \, dy+\int _{\underline{\beta }}^{\overline{\beta }} r \, dy+\int _{\overline{\beta }}^m \omega \, dy\nonumber \\&=\frac{1}{4} \left( -\overline{\beta }^2+2 m \overline{\beta }+\underline{\beta } \left( 2 m-\underline{\beta }\right) \right) \end{aligned}$$
(46)
$$\begin{aligned} RI(\underline{\beta })&=\int _{0}^{\omega }ydy+\int _{\omega }^{m}\omega dy \nonumber \\&=\frac{1}{8} \left( \overline{\beta }+\underline{\beta }\right) \left( -\overline{\beta }-\underline{\beta }+4 m\right) >0 \end{aligned}$$
(47)
$$\begin{aligned} RI(\underline{\beta })-RI(y_{\omega })&=\int _{\underline{\beta }}^{\omega } (y-r) \, dy+\int _{\omega }^{\overline{\beta }} (\omega -r) \, dy\nonumber \\&=\frac{1}{8} \left( \overline{\beta }-\underline{\beta }\right) ^2>0 \end{aligned}$$
(48)

Case 2

$$\begin{aligned} RI({\overline{y}})&=\int _0^{\underline{\beta }} y \, dy+\int _{\underline{\beta }}^{{\overline{y}}} r \, dy+\int _{{\overline{y}}}^m \omega \, dy\nonumber \\&=\frac{1}{2} \left( \overline{\beta } \left( m-\underline{\beta }\right) +m \underline{\beta }\right) \end{aligned}$$
(49)
$$\begin{aligned} RI(\underline{\beta })-RI({\overline{y}})&=\int _{\underline{\beta }}^{\omega } (y-r) \, dy+\int _{\omega }^{\overline{\beta }} (\omega -r) \, dy\nonumber \\&=-\frac{1}{8} \left( \overline{\beta }-\underline{\beta }\right) ^2<0 \end{aligned}$$
(50)

\(\square \)

1.3.2 A.3.2 Reported income comparative statics

Case 1 Everyone hires a firm, i.e., \(y_d(c)=\underline{\beta }\)

Reported income:

$$\begin{aligned} RI(\underline{\beta })= \int _{0}^{\omega }ydy+\int _{\omega }^{m}\omega dy= \omega m-\frac{\omega ^2}{2} \end{aligned}$$
(51)

In this case, none of the parameters have an effect on aggregate reported income.

Case 2 Only taxpayers with income above the first demand threshold, i.e., \(y>y_{y}=\underline{\beta }+\frac{2\sqrt{ct(\overline{\beta }-\underline{\beta })}}{t},\) hire a firm.

First note that Eq. 33 states that \(y_y \in [\underline{\beta },\overline{\beta }]\). As \(\omega \in [\underline{\beta }, \overline{\beta }]\) is also the case, the analysis of reported income will be different whether \(y_y>\omega \) or not.

Case 2a \(y_y<\omega \) Note that from Eq. 33, one can see that to have \(y_d(c)=y_y\), it should be the case that \(0\le c \le \frac{1}{4}(\overline{\beta }-\underline{\beta })\). Moreover, \(y_y<\omega \) is only possible if \(0\le c \le \frac{1}{16}(\overline{\beta }-\underline{\beta })\) Reported income:

$$\begin{aligned} \begin{aligned} RI(y_{y_1})&= \int _0^{\underline{\beta }} y \, dy + \int _{\underline{\beta }}^{y_y} r \, dy +\int _{y_y}^{\omega } y \, dy +\int _{\omega }^m \omega \, dy\\&\frac{c \underline{\beta }}{t}-\frac{c \overline{\beta }}{t}+m \omega -\frac{\omega ^2}{2} \end{aligned} \end{aligned}$$
(52)

Taking the derivative with respect to \(\underline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(y_y)}{\partial \underline{\beta }} =\frac{c}{t}>0 \end{aligned}$$
(53)

Taking the derivative with respect to \(\overline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(y_y)}{\partial \overline{\beta }} =-\frac{c}{t}<0 \end{aligned}$$
(54)

Derivative of reported income with respect to \(\epsilon =({\overline{\beta }} -{\underline{\beta }})\): To do this, define \({\overline{\beta }}=\omega +\epsilon \) and \({\underline{\beta }}=\omega -\epsilon \) and take derivatives with respect to \(\epsilon \), and then substitute \(\epsilon =(\overline{\beta }-\underline{\beta })\) and \(\omega =\frac{1}{2} (\overline{\beta }+\underline{\beta })\)

$$\begin{aligned} \frac{\partial RI(y_y)}{\partial {\epsilon }} =-\frac{c}{t}<0 \end{aligned}$$
(55)

Derivative with respect to t:

$$\begin{aligned} \frac{\partial RI(y_y)}{\partial t}=\frac{c \left( \overline{\beta }-\underline{\beta }\right) }{t^2}>0 \end{aligned}$$
(56)

Derivative with respect to c:

$$\begin{aligned} \frac{\partial RI(y_y)}{\partial c}=-\frac{\overline{\beta }-\underline{\beta }}{t}<0 \end{aligned}$$
(57)

Case 2b \(y_y<\omega \) For similar reasons to Case 2a, \(y_y>\omega \) is only possible if \( \frac{1}{16}(\overline{\beta }-\underline{\beta })\le c \le \frac{1}{4}(\overline{\beta }-\underline{\beta })\) Reported income:

$$\begin{aligned} \begin{aligned} RI(y_{y_2})&= \int _0^{\underline{\beta }} y \, dy + \int _{\underline{\beta }}^{y_y} r \, dy+\int _{y_y}^m \omega \, dy\\&\frac{2 c \overline{\beta }+\underline{\beta } \left( 4 \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }-2 c-2 t \omega \right) -4 \omega \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }+t \underline{\beta }^2+2 m t \omega }{2 t} \end{aligned} \end{aligned}$$
(58)

Taking the derivative with respect to \(\underline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(y_{y_2})}{\partial \underline{\beta }} =\frac{5 \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }-t \overline{\beta }+t \underline{\beta }-2 c}{2 t}>0 \end{aligned}$$
(59)

Taking the derivative with respect to \(\overline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(y_{y_2})}{\partial \overline{\beta }} =-\frac{\sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }-2 c}{2 t}<0 \end{aligned}$$
(60)

Derivative of reported income with respect to \(\epsilon =({\overline{\beta }} -{\underline{\beta }})\): To do this, define \({\overline{\beta }}=\omega +\epsilon \) and \({\underline{\beta }}=\omega -\epsilon \) and take derivatives with respect to \(\epsilon \), and then substitute \(\epsilon =(\overline{\beta }-\underline{\beta })\) and \(\omega =\frac{1}{2} (\overline{\beta }+\underline{\beta })\)

$$\begin{aligned} \frac{\partial RI(y_{y_2})}{\partial {\epsilon }} =\frac{-6 \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }+t \left( \overline{\beta }-\underline{\beta }\right) +4 c}{4 t}<0 \end{aligned}$$
(61)

Derivative with respect to t:

$$\begin{aligned} \frac{\partial RI(y_{y_2})}{\partial t}=\frac{\left( \overline{\beta }-\underline{\beta }\right) \left( \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }-2 c\right) }{2 t^2}>0 \end{aligned}$$
(62)

Derivative with respect to c:

$$\begin{aligned} \frac{\partial RI(y_{y_2})}{\partial c}=-\frac{\left( \overline{\beta }-\underline{\beta }\right) \left( \sqrt{c t \left( \overline{\beta }-\underline{\beta }\right) }-2 c\right) }{2 c t}<0 \end{aligned}$$
(63)

Case 3 Only taxpayers with income above the first demand threshold, i.e., \(y>y_{\overline{\beta }}=2\overline{\beta }-\underline{\beta }+\frac{\sqrt{2t((\overline{\beta }-\underline{\beta })(2t(\overline{\beta }-\underline{\beta })-2c)}}{t},\) hire a firm.

From Eq. 33, one can see that to have \(y_d(c)=y_y\), it should be the case that \(\frac{1}{4}(\overline{\beta }-\underline{\beta })\le c \le \frac{1}{2}(\overline{\beta }-\underline{\beta }). \)

Reported income:

$$\begin{aligned} \begin{aligned}&RI(y_{\overline{\beta }})= \int _0^{\underline{\beta }} y \, dy+\int _{\underline{\beta }}^{y_2} r \, dy+\int _{y_2}^m \omega \, dy\\&\frac{2 \left( c \underline{\beta }-\overline{\beta } \left( t \underline{\beta }+c+2 t \omega \right) +t \omega \left( \underline{\beta }+m\right) \right) +\left( 2 \omega -2 \overline{\beta }\right) \sqrt{2 t \left( \overline{\beta }-\underline{\beta }\right) \left( t \left( \overline{\beta }-\underline{\beta }\right) -2 c\right) }+3 t \overline{\beta }^2}{2 t}\\ \end{aligned} \end{aligned}$$
(64)

Taking the derivative with respect to \(\underline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(y_{\overline{\beta }})}{\partial \underline{\beta }} =\frac{1}{2} \left( -\left( \overline{\beta }-\underline{\beta }\right) +\frac{\sqrt{2} \left( \overline{\beta }-\underline{\beta }\right) \left( t \left( \overline{\beta }-\underline{\beta }\right) -c\right) }{\sqrt{t \left( \overline{\beta }-\underline{\beta }\right) \left( t \left( \overline{\beta }-\underline{\beta }\right) -2 c\right) }}+\frac{2 c}{t}\right) >0 \end{aligned}$$
(65)

Taking the derivative with respect to \(\overline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned}&\frac{\partial RI(y_{\overline{\beta }})}{\partial \overline{\beta }} =2 \left( \overline{\beta }-\underline{\beta }\right) -\frac{\left( \overline{\beta }-\underline{\beta }\right) \left( 3 t \left( \overline{\beta }-\underline{\beta }\right) -5 c\right) }{\sqrt{2 t \left( \overline{\beta }-\underline{\beta }\right) \left( t \left( \overline{\beta }-\underline{\beta }\right) -2 c\right) }}-\frac{c}{t} \end{aligned}$$
(66)
$$\begin{aligned}&\frac{\partial RI(y_{\overline{\beta }})}{\partial \overline{\beta }}= {\left\{ \begin{array}{ll} >0 &{}\text {if } \frac{1}{4}t(\overline{\beta }-\underline{\beta })\le c \le (\sqrt{2}-1)t(\overline{\beta }-\underline{\beta }) \\ <0 &{}\text {if } (\sqrt{2}-1)t(\overline{\beta }-\underline{\beta })\le c \le \frac{1}{2}t(\overline{\beta }-\underline{\beta }) \end{array}\right. } \end{aligned}$$
(67)

Derivative of reported income with respect to \(\epsilon =({\overline{\beta }} -{\underline{\beta }})\): To do this, define \({\overline{\beta }}=\omega +\epsilon \) and \({\underline{\beta }}=\omega -\epsilon \) and take derivatives with respect to \(\epsilon \), and then substitute \(\epsilon =(\overline{\beta }-\underline{\beta })\) and \(\omega =\frac{1}{2} (\overline{\beta }+\underline{\beta })\)

$$\begin{aligned} \frac{\partial RI(y_{\overline{\beta }})}{\partial {\epsilon }} =\frac{5}{2} \left( \overline{\beta }-\underline{\beta }\right) +\frac{\left( \overline{\beta }-\underline{\beta }\right) \left( 3 c-2 t \left( \overline{\beta }-\underline{\beta }\right) \right) }{\sqrt{\frac{1}{2} t \left( \overline{\beta }-\underline{\beta }\right) \left( t \overline{\beta }-t \underline{\beta }-2 c\right) }}-\frac{2 c}{t}<0 \end{aligned}$$
(68)

Derivative with respect to t

$$\begin{aligned} \frac{\partial RI(y_{\overline{\beta }})}{\partial t}=-\frac{c \left( \overline{\beta }-\underline{\beta }\right) \left( \sqrt{2} \sqrt{t \left( \underline{\beta }-\overline{\beta }\right) \left( -t \overline{\beta }+t \underline{\beta }+2 c\right) }-2 t \overline{\beta }+2 t \underline{\beta }+4 c\right) }{2 t^2 \left( t \overline{\beta }-t \underline{\beta }-2 c\right) }<0 \end{aligned}$$
(69)

Derivative with respect to c:

$$\begin{aligned} \frac{\partial RI(y_r)RI(y_{\overline{\beta }})}{\partial c}=\frac{\left( \overline{\beta }-\underline{\beta }\right) \left( \sqrt{2} \sqrt{t \left( \underline{\beta }-\overline{\beta }\right) \left( -t \overline{\beta }+t \underline{\beta }+2 c\right) }-2 t \overline{\beta }+2 t \underline{\beta }+4 c\right) }{2 t \left( t \overline{\beta }-t \underline{\beta }-2 c\right) }>0 \end{aligned}$$
(70)

Case 4 Only taxpayers with income above \({\overline{y}}\), i.e., \(y_d(c)={\overline{y}}.\)

Again, from Eq. 33, one can see that to have \(y_d(c)={\overline{y}}\), it should be the case that \( c=\frac{1}{2}(\overline{\beta }-\underline{\beta }). \)

Reported income:

$$\begin{aligned} \begin{aligned} RI({\overline{y}})&= \int _0^{\underline{\beta }} y \, dy+\int _{\underline{\beta }}^{{\overline{y}}} r \, dy+\int _{{\overline{y}}}^m \omega \, dy\\&\overline{\beta }^2-\frac{\underline{\beta }^2}{2}+\omega \left( m-2 \overline{\beta }+\underline{\beta }\right) \end{aligned} \end{aligned}$$
(71)

Taking the derivative with respect to \(\underline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI({\overline{y}})}{\partial \underline{\beta }} =\frac{1}{2} \left( \overline{\beta }-\underline{\beta }\right) >0 \end{aligned}$$
(72)

Taking the derivative with respect to \(\overline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI({\overline{y}})}{\partial \overline{\beta }} =\overline{\beta }-\underline{\beta }>0 \end{aligned}$$
(73)

Derivative of reported income with respect to \(\epsilon =({\overline{\beta }} -{\underline{\beta }})\): To do this, define \({\overline{\beta }}=\omega +\epsilon \) and \({\underline{\beta }}=\omega -\epsilon \) and take derivatives with respect to \(\epsilon \), and then substitute \(\epsilon =(\overline{\beta }-\underline{\beta })\) and \(\omega =\frac{1}{2} (\overline{\beta }+\underline{\beta })\)

$$\begin{aligned} \frac{\partial RI(y_{{\overline{y}}})}{\partial {\epsilon }} =\frac{1}{2} \left( \overline{\beta }-\underline{\beta }\right) >0 \end{aligned}$$
(74)

Derivative with respect to t:

$$\begin{aligned} \frac{\partial RI({\overline{y}})}{\partial t}=0 \end{aligned}$$
(75)

Derivative with respect to c:

$$\begin{aligned} \frac{\partial RI({\overline{y}})}{\partial c}=0 \end{aligned}$$
(76)

Case 5 No one hires the firm, i.e., \(y_d(c)=m\).

Reported income:

$$\begin{aligned} \begin{aligned} RI(m)&= \int _0^{\underline{\beta }} y \, dy + \int _{\underline{\beta }}^{{\overline{y}}} r \, dy + \int _{{\overline{y}}}^m \overline{\beta } \, dy \\&\quad -\overline{\beta }^2-\frac{\underline{\beta }^2}{2}+\overline{\beta } \left( \underline{\beta }+m\right) \end{aligned} \end{aligned}$$
(77)

Taking the derivative with respect to \(\underline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(m)}{\partial \overline{\beta }} =\overline{\beta }-\underline{\beta }>0 \end{aligned}$$
(78)

Taking the derivative with respect to \(\overline{\beta }\) and then substituting \(\omega =\frac{\overline{\beta }+\underline{\beta }}{2}\)

$$\begin{aligned} \frac{\partial RI(m)}{\partial \underline{\beta }} =m-2 \overline{\beta }+\underline{\beta }>0 \end{aligned}$$
(79)

Derivative of reported income with respect to \(\epsilon =({\overline{\beta }} -{\underline{\beta }})\):

$$\begin{aligned} \frac{\partial RI(y_m}{\partial {\epsilon }} =0 \end{aligned}$$
(80)

Derivative with respect to t:

$$\begin{aligned} \frac{\partial RI(m)}{\partial t}=0 \end{aligned}$$
(81)

Derivative with respect to c:

$$\begin{aligned} \frac{\partial RI(m)}{\partial c}=0 \end{aligned}$$
(82)

1.4 A.4 Effect of tax preparation firms when tax preparation costs are increasing in income

Demand cutoff schedule is as follows:

If \(c<\frac{t(\overline{\beta }-\underline{\beta })}{4\overline{\beta }}\)

$$\begin{aligned} D(c)=\left[ \frac{2 c \overline{\beta }+\underline{\beta } (t-2 c)+2 \sqrt{c \left( \overline{\beta }-\underline{\beta }\right) \left( c \overline{\beta }+\underline{\beta } (t-c)\right) }}{t},\frac{t \left( \overline{\beta }-\underline{\beta }\right) }{2 c}\right] \end{aligned}$$
(83)

If \(\frac{t(\overline{\beta }-\underline{\beta })}{4\overline{\beta }}<c<\frac{t(\overline{\beta }-\underline{\beta })}{4\overline{\beta }-2\underline{\beta }}\)

$$\begin{aligned} D(c)=\left[ \frac{-4 c \overline{\beta }+4 c \underline{\beta }-\sqrt{\left( 4 c \overline{\beta }-4 c \underline{\beta }-4 t \overline{\beta }+2 t \underline{\beta }\right) ^2-4 t \left( 2 t \overline{\beta }^2-t \underline{\beta }^2\right) }+4 t \overline{\beta }-2 t \underline{\beta }}{2 t},\frac{t \left( \overline{\beta }-\underline{\beta }\right) }{2 c}\right] \end{aligned}$$
(84)

If \(\frac{t(\overline{\beta }-\underline{\beta })}{4\overline{\beta }-2\underline{\beta }}<c<\frac{t \left( {\overline{y}}-\sqrt{2 \overline{\beta }^2-\underline{\beta }^2}\right) }{2 \left( \overline{\beta }-\underline{\beta }\right) }\)

$$\begin{aligned} \begin{aligned} D(c)=\left[ {\overline{y}}-\frac{4 c( \overline{\beta }- \underline{\beta })+\sqrt{\left( 4 c \overline{\beta }-4 c \underline{\beta }-4 t \overline{\beta }+2 t \underline{\beta }\right) ^2-4 t \left( 2 t \overline{\beta }^2-t \underline{\beta }^2\right) }}{2 t}, \right. \\ \left. {\overline{y}}-\frac{4 c( \overline{\beta }- \underline{\beta })-\sqrt{\left( 4 c \overline{\beta }-4 c \underline{\beta }-4 t \overline{\beta }+2 t \underline{\beta }\right) ^2-4 t \left( 2 t \overline{\beta }^2-t \underline{\beta }^2\right) }}{2 t}\right] \end{aligned} \end{aligned}$$
(85)

Where the first interval spans the part of region 1, all of region 2, and part of region 3. The second interval spans parts of regions 2 and 3, and the third interval only spans parts of second region 2.

1.5 A.5 Effect of tax preparation firms when firms have imperfect information

The ex post income of a taxpayer, denoted by \(EP_{self}\), who reports income based on her optimal reporting strategy, \(r_{self}\), is as follows:

$$\begin{aligned} EP_{self}= {\left\{ \begin{array}{ll} y(1-t) &{}\text {if } \ y\le \underline{\beta } \\ \frac{(y-tr_{self})}{2}+\frac{(y-tr_{self}-(y-r_{self})t(1+\pi ))}{2} &{}\text {if } \ \underline{\beta } \le y \le \overline{\beta }\\ y-tr_{self} &{}\text {if } \quad \overline{\beta } \le y \le 2\overline{\beta }-\underline{\beta }\\ y-{\overline{\beta }} t &{}\text {if } \ y\ge 2\overline{\beta }-\underline{\beta } \end{array}\right. } \end{aligned}$$
(86)

Substituting \(r_{self}\) simplifies \(EP_{self}\) as follows:

$$\begin{aligned} EP_{self}= {\left\{ \begin{array}{ll} y(1-t) &{}\text {if } \ 0 \le y \le \overline{\beta } \\ y-t\frac{y+\underline{\beta }}{2} &{}\text {if } \ \overline{\beta } \le y \le 2\overline{\beta }-\underline{\beta }\\ y-{\overline{\beta }} t &{}\text {if } \ y\ge 2\overline{\beta }-\underline{\beta } \end{array}\right. } \end{aligned}$$
(87)

Similarly, replacing \([\underline{\beta },\overline{\beta }] \) by \([\underline{\beta }_f,\overline{\beta }_f]\) in Eq. 87 yields the ex post income of a taxpayer who hires a firm, denoted by \(EP_{firm}\), can be defined as follows:

$$\begin{aligned} EP_{firm}= {\left\{ \begin{array}{ll} y(1-t) &{}\text {if } \ \underline{\beta }_f \le y \le \overline{\beta }_f \\ y-t\frac{y+\underline{\beta }_f}{2} &{}\text {if } \ \overline{\beta }_f \le y \le 2\overline{\beta }_f-\underline{\beta }_f\\ y-{\overline{\beta }_f} t &{}\text {if } \ y\ge 2\overline{\beta }_f-\underline{\beta }_f \end{array}\right. } \end{aligned}$$
(88)

The ex post excess benefit of hiring a firm is then, as follows:

$$\begin{aligned} EP_{dif}= {\left\{ \begin{array}{ll} 0 \quad &{}\text {if } \ 0 \le y \le \overline{\beta }_f \\ t y-\frac{1}{2} t \left( \underline{\beta }_{f}+y\right) \quad &{}\text {if } \ \overline{\beta }_f \le y \le \overline{\beta }\\ \frac{1}{2} t \left( \underline{\beta }+y\right) -\frac{1}{2} t \left( \underline{\beta }_{f}+y\right) \quad &{}\text {if } \ \overline{\beta } \le y \le 2\overline{\beta }_f-\underline{\beta }_f\\ \frac{1}{2} t \left( \underline{\beta }+y\right) -t \overline{\beta }_{f} \quad &{}\text {if } \ 2\overline{\beta }_f-\underline{\beta }_f \le y \le 2\overline{\beta }-\underline{\beta }\\ t (\overline{\beta }-\overline{\beta }_{f}) \quad &{}\text {if } \ y\ge 2\overline{\beta }-\underline{\beta } \end{array}\right. } \end{aligned}$$
(89)

Note that assuming that the taxpayer knows the exact ex post excess benefit of hiring a firm implies that the she also knows the belief spread of the firm. To avoid such an interpretation, I will define the average additional benefit for a taxpayer based on her reporting strategy and true income.

First, consider an individual whose income is below \(\underline{\beta }\): this individual always reports her true income, regardless of the preparation method; hence, she does not need to hire a firm. Next, consider a taxpayer whose income is somewhere in the interval \([\underline{\beta },{\overline{y}}]\). The average ex post excess benefit of this individual is characterized by amassing ex post excess benefit from hiring a firm in the interval \([\underline{\beta },{\overline{y}}]\) and dividing by the interval itself.

$$\begin{aligned} \begin{aligned}&\frac{\displaystyle \int \limits _{\overline{\beta }_f}^{\overline{\beta }}\left( t y-\frac{1}{2} t \left( \underline{\beta }_{f}+y\right) \right) dy+\int \limits _{\overline{\beta }}^{2\overline{\beta }_f-\underline{\beta }_f} \left( \frac{1}{2} t \left( \underline{\beta }+y\right) -\frac{1}{2} t \left( \underline{\beta }_{f}+y\right) \right) dy}{(2 \overline{\beta }- \underline{\beta })- \underline{\beta }}\\&\qquad +\frac{\displaystyle \int \limits _{2\overline{\beta }_f-\underline{\beta }_f}^{2\overline{\beta }-\underline{\beta }}\left( \frac{1}{2} t \left( \underline{\beta }+y\right) -t \overline{\beta }_{f}\right) dy}{(2 \overline{\beta }- \underline{\beta })- \underline{\beta }}\\&\quad =\frac{t \left( -2 \overline{\beta } \left( \underline{\beta }+4 \overline{\beta }_{f}\right) +\overline{\beta }_{f} \left( 4 \underline{\beta }-2 \underline{\beta }_{f}\right) +5 \overline{\beta }^2-\underline{\beta }^2+3 \overline{\beta }_{f}^2+\underline{\beta }_{f}^2\right) }{8 \left( \overline{\beta }-\underline{\beta }\right) } \end{aligned} \end{aligned}$$
(90)

Similarly, the average ex post excess benefit of hiring a firm for a taxpayer with income in the remaining interval, i.e., \(y\in [2\overline{\beta }-\underline{\beta },m]\), where m is the top income level as defined before, is as follows:

$$\begin{aligned} \begin{aligned}&\frac{\displaystyle \int \limits _{2\overline{\beta }-\underline{\beta }}^{m}\left( t (\overline{\beta }-\overline{\beta }_{f})\right) dy}{m-(2 \overline{\beta }- \underline{\beta })}\\&\quad = t (\overline{\beta }-\overline{\beta }_{f}) \end{aligned} \end{aligned}$$
(91)

For analytical simplicity, assume that \(\underline{\beta }_f=\frac{1}{4} \left( \overline{\beta }+3 \underline{\beta }\right) \), i.e., is halfway between \(\underline{\beta }\) and \(\omega \), and \(\overline{\beta }_f=\frac{1}{4} \left( \underline{\beta }+3 \overline{\beta }\right) \), i.e., is halfway between \(\overline{\beta }\) and \(\omega \). Then, the average ex post benefit function can be written as follows:

$$\begin{aligned} AEP_{dif}= {\left\{ \begin{array}{ll} 0 \quad &{}\text {if } \ y\le \underline{\beta } \\ \frac{3}{64} t \left( \overline{\beta }-\underline{\beta }\right) \quad &{}\text {if } \ \underline{\beta }\le y \le 2\overline{\beta }-\underline{\beta }\\ \frac{1}{4} t \left( \overline{\beta }-\underline{\beta }\right) \quad &{}\text {if } \ y\ge 2\overline{\beta }-\underline{\beta } \end{array}\right. } \end{aligned}$$
(92)

The interpretation of the above equation is that the agent knows that hiring a tax preparer firm will have some benefit, but she is not sure exactly what that benefit is as she does not know what the firm knows. By assuming a variant of rational expectations, the agent expects to receive an average benefit from hiring a firm derived by using the ex post incomes. A taxpayer will hire a firm if her relevant \(AEP_{dif}>c\), where c is the marginal cost of tax preparation services. The demand for tax preparation services in this case can be characterized by the following equation:

$$\begin{aligned} D(c)= {\left\{ \begin{array}{ll} {[}{\underline{\beta }},m] &{}\text {if } \ 0< c \le \frac{3}{64} t \left( {\overline{\beta }}-{\underline{\beta }}\right) \\ {[}2{\overline{\beta }}-{\underline{\beta }},m] &{}\text {if } \ \frac{3}{64} t \left( {\overline{\beta }}-{\underline{\beta }}\right) < c \le \frac{1}{4} t \left( {\overline{\beta }}-{\underline{\beta }}\right) \end{array}\right. } \end{aligned}$$
(93)

1.5.1 A.5.1 Effect of a tax preparation firm when the tax preparer market is a monopoly

The monopoly demand cutoff schedule as a function of the fee, f, the monopolist charges, is as follows:

$$\begin{aligned} y_d(f)= {\left\{ \begin{array}{ll} y_{y}=\underline{\beta }+\frac{2\sqrt{ft(\overline{\beta }-\underline{\beta })}}{t} \quad &{}\text {if } \ 0\le f \le \frac{t}{4}(\overline{\beta }-\underline{\beta })\\ y_{{\overline{\beta }}}=2\overline{\beta }-\underline{\beta }-\frac{\sqrt{2t((\overline{\beta }-\underline{\beta })(2t(\overline{\beta }-\underline{\beta })-2f)}}{t} &{}\text {if } \ \frac{t}{4}(\overline{\beta }-\underline{\beta })\le f \le \frac{1}{2}({\overline{\beta }}-{\underline{\beta }})t\\ m &{}\text {if } \ f> \frac{1}{2}({\overline{\beta }}-{\underline{\beta }})t \end{array}\right. } \end{aligned}$$
(94)

Given a demand cutoff \(y_d(f)\), the firm maximizes the following profit function:

$$\begin{aligned} (m-y_d (f))(f-c) \end{aligned}$$
(95)

The maximization problem then yields the following fee schedule:

$$\begin{aligned} f(y_y)=&\frac{6 c \overline{\beta }-6 c \underline{\beta }+\sqrt{t} \left( \underline{\beta }-m\right) \sqrt{12 c \overline{\beta }-2 \underline{\beta } (6 c+m t)+t \underline{\beta }^2+m^2 t}-2 m t \underline{\beta }+t \underline{\beta }^2+m^2 t}{18 \left( \overline{\beta }-\underline{\beta }\right) } \end{aligned}$$
(96)
$$\begin{aligned} f(y_{\overline{\beta }})=&\frac{\sqrt{t^2 \left( -2 \overline{\beta }+\underline{\beta }+m\right) ^2 \left( 10 \overline{\beta }^2+7 \underline{\beta }^2+2 m \underline{\beta }-4 \overline{\beta } \left( 4 \underline{\beta }+m\right) +m^2\right) }}{18 \left( \overline{\beta }-\underline{\beta }\right) }\nonumber \\&\frac{t \left( -5 \underline{\beta }^2-2 \overline{\beta } \left( \overline{\beta }+2 m\right) +2 \underline{\beta } \left( 4 \overline{\beta }+m\right) +m^2\right) }{18 \left( \overline{\beta }-\underline{\beta }\right) } \end{aligned}$$
(97)
$$\begin{aligned} f({\overline{y}})=&\frac{1}{2} t \left( \overline{\beta }-\underline{\beta }\right) \end{aligned}$$
(98)

1.5.2 A.5.2 Risk-averse agents

Changing the risk preference of agents changes self-preparation expected income more than it affects anything else in the model. In cases where an agent chooses to underreport her income, imposing risk-averse behavior will decrease the level of expected income under self-preparation more than firm preparation. This is because agents are exposed to the risk of being audited in the former case, whereas there is no risk of audit in the latter. This implies that given a fixed marginal cost, demand for tax preparation services will be higher in the model with risk-averse agents. However, it is not obvious whether this change in assumptions will always lead to a higher evasion level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaçamak, A.Y. The role of information aggregators in tax compliance. Int Tax Public Finance 29, 237–285 (2022). https://doi.org/10.1007/s10797-021-09666-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10797-021-09666-1

Keywords

JEL Classification

Navigation