Skip to main content
Log in

Intervalence charge transfer of Ti and Fe defects in blue kyanite

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The electronic and magnetic properties of Ti–Fe defects substitution for two adjacent aluminum ions in blue kyanite with various spin configurations, charges, and alignments have been investigated using first-principles calculations based on density functional theory. Based on the total-energy calculations, we find two possible ground-state spin configurations: high-spin states of TiIV–FeII and TiIII–FeIII with anti-ferromagnetic alignment between Ti and Fe. Among all spin states and alignments, the high-spin state of TiIV–FeII type-IV alignment is the lowest energy configuration. The optical excitation energy of the high-spin state of TiIV–FeII calculated from the highest occupied Fe state to the lowest unoccupied Ti state is 1.48 eV, lying in the infrared region of the solar spectrum. Owing to the infrared absorption of Ti–Fe defects, these defects are unlikely to be responsible for the origin of the blue color in kyanite. We, therefore, suggest that other defects or mechanisms may be responsible for the blue coloration in kyanite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Littlefield, Composition Friction Element for a Railroad Brake Shoe (U.S. Patent 4, 313, 869 United States, February 2, 1982)

  2. O. Belogurova, N. Grishin, Refract. Ind. Ceram. 53, 26 (2012)

    Article  Google Scholar 

  3. A. Skoog, R. Moore, Am. Ceram. Soc. Bull. 67, 1180 (1988)

    Google Scholar 

  4. W. Zhang, Q. Meng, W. Dai, Chin. J. Geochem. 32, 326 (2013)

    Article  Google Scholar 

  5. C.W. Burnham, Z. Kristallogr. 118, 337 (1963)

    Article  Google Scholar 

  6. E.W. White, W.B. White, Science 158, 915 (1967)

    Article  ADS  Google Scholar 

  7. G. Faye, E. Nickel, Can. Mineral. 10, 35 (1969)

    Google Scholar 

  8. J. Kalita, G. Wary, Appl. Phys. A Mater. Sci. Process. 119, 1555 (2015)

    Article  ADS  Google Scholar 

  9. R.G. Burns, Ann. Rev. Earth Planet. Sci. 9, 345 (1981)

    Article  ADS  Google Scholar 

  10. R.G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University Press, New York, 1993).

    Book  Google Scholar 

  11. G.R. Rossman, E.S. Grew, W. Dollase, Am. Mineral. 67, 749 (1982)

    Google Scholar 

  12. G. Faye, Am. Mineral. 56, 344 (1971)

    Google Scholar 

  13. K.M. Parkin, B.M. Loeffler, R.G. Burns, Phys. Chem. Minerals 1, 301 (1977)

    Article  ADS  Google Scholar 

  14. G. Smith, R.G.J. Strens, in The physics and chemistry of minerals and rocks. ed. by R.G.J. Strens (Wiley, New York, 1976)

    Google Scholar 

  15. G. Faye, P. Manning, E. Nickel, Am. Mineral. 53, 1174 (1968)

    Google Scholar 

  16. B.J. Skinner, S.P. Clark, D.E. Appleman, Am. J. Sci. 259, 651 (1961)

    Article  ADS  Google Scholar 

  17. B.M. Loeffler, R.G. Burns, J. Tossell, in Proceedings of the 6th Lunar and Planetary Science Conference (New York, United States, March 17–21, 1975).

  18. G. Hempel et al., Phys. Lett. A 55, 51 (1975)

    Article  ADS  Google Scholar 

  19. S. Na-Phattalung, S. Limpijumnong, J. T-Thienprasert, J. Yu, Acta Mater. 143, 248 (2018)

    Article  ADS  Google Scholar 

  20. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  22. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. J.P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  25. A. Liechtenstein, V. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  26. J.K. Bristow, D. Tiana, S.C. Parker, A. Walsh, J. Mater. Chem. A 2, 6198 (2014)

    Article  Google Scholar 

  27. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  29. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y. Li, W. Wang, C. Zhou, F. Huang, Solid Earth Sci. 4, 142 (2019)

    Article  Google Scholar 

  31. K. Persson, Materials data on Al2SiO5 (SG:2), https://materialsproject.org/materials/mp-5065/. Accessed 26 Feb 2019

  32. S. Maj, Phys. Chem. Mineral. 17, 711 (1991)

    Article  ADS  Google Scholar 

  33. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  34. F. Tran, J. Stelzl, P. Blaha, J. Chem. Phys. 144, 204120 (2016)

    Article  ADS  Google Scholar 

  35. Z.-H. Yang, H. Peng, J. Sun, J.P. Perdew, Phys. Rev. B 93, 205205 (2016)

    Article  ADS  Google Scholar 

  36. Y. Zhang et al., NPJ Comput. Mater. 4, 1 (2018)

    Article  ADS  Google Scholar 

  37. D.F. Barnes, Infrared Luminescence of Minerals (U.S. Government Printing Office, Washington, 1958).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Achievement Scholarship of Thailand (SAST). One of the authors (SN) acknowledges the support by Walailak University (no. WU62230/2562). HSK was funded by the National Research Foundation of Korea (Basic Science Research Program, Grant No. 2020R1C1C1005900). The computations were carried out at the Synchrotron Light Research Institute (Public Organization), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutassana Na-Phattalung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niamjan, N., T-Thienprasert, J., Kim, H.S. et al. Intervalence charge transfer of Ti and Fe defects in blue kyanite. J. Korean Phys. Soc. 78, 671–678 (2021). https://doi.org/10.1007/s40042-020-00047-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00047-1

Keywords

Navigation