Skip to main content

Advertisement

Log in

Influence of Distal Re-entry Tears on False Lumen Thrombosis After Thoracic Endovascular Aortic Repair in Type B Aortic Dissection Patients: A Computational Fluid Dynamics Simulation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Distal re-entry tears play a significant role in false lumen (FL) thrombosis, which will strongly affect the postoperative long-term survival of patients with type B aortic dissection (TBAD) after thoracic endovascular aortic repair (TEVAR). This study aimed to investigate the influence of a peculiar morphological parameter of the residual re-entry tears in TBAD patients after TEVAR on long-term FL thrombosis using the computational fluid dynamics.

Methods

Ideal population-based three-dimensional models of post-operative TBAD were established. Numerical simulation was performed to investigate the hemodynamic differences caused by different tear features, including the tear count, the maximum distance between tears, and the tear area.

Results

Although the low relative residence time (RRT) area did not change significantly when the tear distance was fixed, the area of oscillatory shear index (OSI) > 0.45 and endothelial cell activation potential (ECAP) > 1.5 decreased significantly with the tear count and area increased and a dramatic increase in blood flow into the FL was also observed. When tear count and total area were fixed, for each 10-mm increase in the maximum distance between tears, the area of low RRT in the FL increased significantly, while the average pressure difference increased by 10.85%.

Conclusion

The different morphology of the re-entry tears had different effects on the thrombosis-related hemodynamic parameters in FL following TEVAR. and the number of re-entry tears was most crucial to the potential thrombosis in the post-TEVAR FL of TBAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ab Naim, W. N. W., P. B. Ganesan, Z. H. Sun, Y. M. Liew, Y. Qian, C. J. Lee, et al. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl. Math. Model. 40(4):3115–3127, 2016. https://doi.org/10.1016/j.apm.2015.09.096.

    Article  Google Scholar 

  2. Alimohammadi, M., O. Agu, S. Balabani, and V. Diaz-Zuccarini. Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Med. Eng. Phys. 36(3):275–284, 2014. https://doi.org/10.1016/j.medengphy.2013.11.003.

    Article  PubMed  Google Scholar 

  3. Armour, C. H., C. Menichini, K. Milinis, R. G. J. Gibbs, and X. Y. Xu. Location of reentry tears affects false lumen thrombosis in aortic dissection following TEVAR. J. Endovasc. Ther. 27(3):396–404, 2020. https://doi.org/10.1177/1526602820917962.

    Article  PubMed  Google Scholar 

  4. Ben Ahmed, S., D. Dillon-Murphy, and C. A. Figueroa. Computational study of anatomical risk factors in idealized models of type B aortic dissection. Eur. J. Vasc. Endovasc. Surg. 52(6):736–745, 2016. https://doi.org/10.1016/j.ejvs.2016.07.025.

    Article  CAS  PubMed  Google Scholar 

  5. Boccadifuoco, A., A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti. Impact of uncertainties in outflow boundary conditions on the predictions of hemodynamic simulations of ascending thoracic aortic aneurysms. Comput. Fluids. 165:96–115, 2018. https://doi.org/10.1016/j.compfluid.2018.01.012.

    Article  Google Scholar 

  6. Buck, A. K. W., J. J. Groszek, D. C. Colvin, S. B. Keller, C. Kensinger, R. Forbes, et al. Combined in silico and in vitro approach predicts low wall shear stress regions in a hemofilter that correlate with thrombus formation in vivo. ASAIO J. 64(2):211, 2018.

    Article  Google Scholar 

  7. Clough, R. E., D. Barilla, P. Delsart, G. Ledieu, R. Spear, S. Crichton, et al. Editor’s choice—long-term survival and risk analysis in 136 consecutive patients with type B aortic dissection presenting to a single centre over an 11 year period. Eur. J. Vasc. Endovasc. 57(5):633–638, 2019. https://doi.org/10.1016/j.ejvs.2018.08.042.

    Article  Google Scholar 

  8. Conrad, M. F., R. S. Crawford, C. J. Kwolek, D. C. Brewster, T. J. Brady, and R. P. Cambria. Aortic remodeling after endovascular repair of acute complicated type B aortic dissection. J. Vasc. Surg. 50(3):510–517, 2009. https://doi.org/10.1016/j.jvs.2009.04.038.

    Article  PubMed  Google Scholar 

  9. Czerny, M., J. Schmidli, S. Adler, J. C. van den Berg, L. Bertoglio, T. Carrel, et al. Current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: an expert consensus document of the European Association for Cardio-Thoracic surgery (EACTS) and the European Society for Vascular Surgery (ESVS). Eur. J. Cardio-Thorac. 55(1):133–162, 2019. https://doi.org/10.1093/ejcts/ezy313.

    Article  Google Scholar 

  10. Dai, W. F., P. Wu, and G. M. Liu. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device. Int. J. Artif. Org. 2020. https://doi.org/10.1177/0391398820975405.

    Article  Google Scholar 

  11. Karmonik, C., J. Bismuth, M. G. Davies, D. J. Shah, H. K. Younes, and A. B. Lumsden. A computational fluid dynamics study pre- and post-stent graft placement in an acute type B aortic dissection. Vasc. Endovasc. Surg. 45(2):157–164, 2011. https://doi.org/10.1177/1538574410389342.

    Article  Google Scholar 

  12. Karmonik, C., M. Muller-Eschner, S. Partovi, P. Geisbusch, M. K. Ganten, J. Bismuth, et al. Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta. Vasc. Endovasc.Surg. 47(8):625–631, 2013. https://doi.org/10.1177/1538574413503561.

    Article  Google Scholar 

  13. Kazimierczak, A., P. Rynio, T. Jedrzejczak, K. Mokrzycki, R. Samad, M. Brykczynski, et al. Expanded Petticoat technique to promote the reduction of contrasted false lumen volume in patients with chronic type B aortic dissection. J. Vasc. Surg. 2019. https://doi.org/10.1016/j.jvs.2019.01.073.

    Article  PubMed  Google Scholar 

  14. Kelsey, L. J., J. T. Powell, P. E. Norman, K. Miller, and B. J. Doyle. A comparison of hemodynamic metrics and intraluminal thrombus burden in a common iliac artery aneurysm. Int. J. Numer. Methods Biol. 33(5):2821, 2017. https://doi.org/10.1002/cnm.2821.

    Article  Google Scholar 

  15. Keramati, H., E. Birgersson, J. P. Ho, S. Kim, K. J. Chua, and H. L. Leo. The effect of the entry and re-entry size in the aortic dissection: a two-way fluid–structure interaction simulation. Biomech. Model. Mechanobiol. 19(6):2643–2656, 2020. https://doi.org/10.1007/s10237-020-01361-0.

    Article  PubMed  Google Scholar 

  16. Li, D., L. Peng, Y. Wang, J. Zhao, D. Yuan, and T. Zheng. Predictor of false lumen thrombosis after thoracic endovascular aortic repair for type B dissection. J. Thorac. Cardiovasc. Surg. 160(2):360–367, 2020. https://doi.org/10.1016/j.jtcvs.2019.07.091.

    Article  PubMed  Google Scholar 

  17. Mao, W., Q. Wang, S. Kodali, and W. Sun. Numerical parametric study of paravalvular leak following a transcatheter aortic valve deployment into a patient-specific aortic root. J. Biomechan. Eng. 140(10):2018. https://doi.org/10.1115/1.4040457.

    Article  Google Scholar 

  18. Mendez, V., M. Di Giuseppe, and S. Pasta. Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Comput. Biol. Med. 100:221–229, 2018. https://doi.org/10.1016/j.compbiomed.2018.07.013.

    Article  PubMed  Google Scholar 

  19. Menichini, C., Z. Cheng, R. G. J. Gibbs, and X. Y. Xu. A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair. J. Biomech. 66:36–43, 2018. https://doi.org/10.1016/j.jbiomech.2017.10.029.

    Article  PubMed  Google Scholar 

  20. Menichini, C., and X. Y. Xu. Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications. J. Math. Biol. 73(5):1205–1226, 2016. https://doi.org/10.1007/s00285-016-0986-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Munshi, B., L. P. Parker, P. E. Norman, and B. J. Doyle. The application of computational modeling for risk prediction in type B aortic dissection. J. Vasc. Surg. 71(5):1789, 2020. https://doi.org/10.1016/j.jvs.2019.09.032.

    Article  PubMed  Google Scholar 

  22. Nakatamari, H., T. Ueda, F. Ishioka, B. Raman, K. Kurihara, G. D. Rubin, et al. Discriminant analysis of native thoracic aortic curvature: risk prediction for endoleak formation after thoracic endovascular aortic repair. J. Vasc. Interv. Radiol. 22(7):974–979, 2011. https://doi.org/10.1016/j.jvir.2011.02.031.

    Article  PubMed  Google Scholar 

  23. Nienaber, C. A., and K. A. Eagle. Aortic dissection: New frontiers in diagnosis and management—part I: from etiology to diagnostic strategies. Circulation. 108(5):628–635, 2003. https://doi.org/10.1161/01.Cir.0000087009.16755.E4.

    Article  PubMed  Google Scholar 

  24. Nienaber, C. A., H. Rousseau, H. Eggebrecht, S. Kische, R. Fattori, T. C. Rehders, et al. Randomized comparison of strategies for type B aortic dissection the investigation of STEnt grafts in aortic dissection (INSTEAD) trial. Circulation. 120(25):2519–2528, 2009. https://doi.org/10.1161/Circulationaha.109.886408.

    Article  PubMed  Google Scholar 

  25. Pellenc, Q., A. Roussel, R. De Blic, A. Girault, P. Cerceau, L. Ben Abdallah, et al. False lumen embolization in chronic aortic dissection promotes thoracic aortic remodeling at midterm follow-up. J. Vasc. Surg. 70(3):710–717, 2019. https://doi.org/10.1016/j.jvs.2018.11.038.

    Article  PubMed  Google Scholar 

  26. Qiao, Y. H., Y. J. Zeng, Y. Ding, J. R. Fan, K. Luo, and T. Zhu. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Comput. Method Biomech. 22(6):620–630, 2019. https://doi.org/10.1080/10255842.2019.1577398.

    Article  Google Scholar 

  27. Qiu, Y., Y. Wang, Y. B. Fan, L. Q. Peng, R. Liu, J. C. Zhao, et al. Role of intraluminal thrombus in abdominal aortic aneurysm ruptures: a hemodynamic point of view. Med. Phys. 46(9):4263–4275, 2019. https://doi.org/10.1002/mp.13658.

    Article  PubMed  Google Scholar 

  28. Qiu, Y., D. Yuan, Y. Wang, J. Wen, and T. H. Zheng. Hemodynamic investigation of a patient-specific abdominal aortic aneurysm with iliac artery tortuosity. Comput. Method Biomech. 21(16):824–833, 2018. https://doi.org/10.1080/10255842.2018.1522531.

    Article  Google Scholar 

  29. Ruel, J., and G. Lachance. Mathematical modeling and experimental testing of three bioreactor configurations based on windkessel models. Heart Int. 5(1):2010. https://doi.org/10.4081/hi.2010.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryzhakov, P., E. Soudah, and N. Dialami. Computational modeling of the fluid flow and the flexible intimal flap in type B aortic dissection via a monolithic arbitrary Lagrangian/Eulerian fluid-structure interaction model. Int. J. Numer. Method Biomed. Eng. 35(11):2019. https://doi.org/10.1002/cnm.3239.

    Article  PubMed  Google Scholar 

  31. Schwein, A., M. Khan, M. Bennett, N. Chakfe, A. B. Lumsden, J. Bismuth, et al. Proposed magnetic resonance imaging criteria to diagnose intramural haematoma and to predict aortic healing after acute type b aortic syndrome. Eur. J. Vasc. Endovasc. 57(3):350–359, 2019. https://doi.org/10.1016/j.ejvs.2018.09.017.

    Article  Google Scholar 

  32. Sengupta, D., A. M. Kahn, E. Kung, M. E. Moghadam, O. Shirinsky, G. A. Lyskina, et al. Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomech. Model Mech. 13(6):1261–1276, 2014. https://doi.org/10.1007/s10237-014-0570-z.

    Article  Google Scholar 

  33. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010. https://doi.org/10.1007/s10439-010-9936-2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spinelli, D., F. Benedetto, R. Donato, G. Piffaretti, M. M. Marrocco-Trischitta, H. J. Patel, et al. Current evidence in predictors of aortic growth and events in acute type B aortic dissection. J. Vasc. Surg. 68(6):1925, 2018. https://doi.org/10.1016/j.jvs.2018.05.232.

    Article  PubMed  Google Scholar 

  35. Tsai, T. T., A. Evangelista, C. A. Nienaber, T. Myrmel, G. Meinhardt, J. V. Cooper, et al. Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N. Engl. J. Med. 357(4):349–359, 2007. https://doi.org/10.1056/NEJMoa063232.

    Article  CAS  PubMed  Google Scholar 

  36. Vergara, C., F. Viscardi, L. Antiga, and G. B. Luciani. Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif. Org. 36(4):368–378, 2012. https://doi.org/10.1111/j.1525-1594.2011.01356.x.

    Article  Google Scholar 

  37. Wan Ab Naim, W. N., P. B. Ganesan, Z. Sun, J. Lei, S. Jansen, S. A. Hashim, et al. Flow pattern analysis in type B aortic dissection patients after stent-grafting repair: comparison between complete and incomplete false lumen thrombosis. Int. J. Numer. Method Biomed. Eng. 34(5):2018. https://doi.org/10.1002/cnm.2961.

    Article  PubMed  Google Scholar 

  38. Wan Ab Naim, W. N., P. B. Ganesan, Z. Sun, K. Osman, and E. Lim. The impact of the number of tears in patient-specific stanford type B aortic dissecting aneurysm: Cfd simulation. J. Mech. Med. Biol. 14(02):1450017, 2014. https://doi.org/10.1142/s0219519414500171.

    Article  Google Scholar 

  39. Wang, H. R., H. Anzai, Y. J. Liu, A. K. Qiao, J. S. Xie, and M. Ohta. Hemodynamic-based evaluation on thrombosis risk of fusiform coronary artery aneurysms using computational fluid dynamic simulation method. Complexity. 2020. https://doi.org/10.1155/2020/8507273.

    Article  Google Scholar 

  40. Wojtaszek, M., E. Wnuk, R. Maciag, K. Lamparski, K. Korzeniowski, and O. Rowinski. Promoting false-lumen thrombosis after thoracic endovascular aneurysm repair in type B aortic dissection by selectively excluding false-lumen distal entry tears. J. Vasc. Interv. Radiol. 28(2):168–175, 2017. https://doi.org/10.1016/j.jvir.2016.07.007.

    Article  PubMed  Google Scholar 

  41. Xiao, N., J. Alastruey, and C. Figueroa. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Methods Biomed. Eng. 30(2):204–231, 2014.

    Article  Google Scholar 

  42. Xu, H., M. Piccinelli, B. G. Leshnower, A. Lefieux, W. R. Taylor, and A. Veneziani. Coupled Morphological-hemodynamic computational analysis of type B aortic dissection: a longitudinal study. Ann. Biomed. Eng. 46(7):927–939, 2018. https://doi.org/10.1007/s10439-018-2012-z.

    Article  PubMed  Google Scholar 

  43. Zhang, S. M., Y. Q. Chen, Y. X. Zhang, D. C. Shi, Y. Shen, J. M. Bao, et al. Should the distal tears of aortic dissection be treated? The risk of distal tears after proximal repair of aortic dissection. Int. J. Cardiol. 261:162–166, 2018. https://doi.org/10.1016/j.ijcard.2018.01.028.

    Article  PubMed  Google Scholar 

  44. Zhu, C., B. Huang, J. Zhao, Y. Ma, D. Yuan, Y. Yang, et al. Influence of distal entry tears in acute type B aortic dissection after thoracic endovascular aortic repair. J. Vasc. Surg. 66(2):375–385, 2017. https://doi.org/10.1016/j.jvs.2016.12.142.

    Article  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China [Grant Nos. 81770471,12072214,1802253]. Application Foundation Project of Sichuan Science and Technology Department [Grant Nos. 2018YYJC, 2019YJ0026].

Author information

Authors and Affiliations

Authors

Contributions

LD: Conceptualization, Software, Data Curation, Writing—Original Draft. YD: Resources, Software, Validation. LZ: Data curation, Software, Visualization. LY: Data Curation, Investigation. ZT: Conceptualization, Supervision, Writing - Review & Editing. FY: Project administration, Writing—Review & Editing.

Corresponding authors

Correspondence to Ding Yuan or Yubo Fan.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Associate Editor Francesco Migliavacca oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zheng, T., Liu, Z. et al. Influence of Distal Re-entry Tears on False Lumen Thrombosis After Thoracic Endovascular Aortic Repair in Type B Aortic Dissection Patients: A Computational Fluid Dynamics Simulation. Cardiovasc Eng Tech 12, 426–437 (2021). https://doi.org/10.1007/s13239-021-00532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00532-z

Keywords

Navigation