Skip to main content

Advertisement

Log in

Airborne pollen trends in Tétouan (NW of Morocco)

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Trends of the airborne annual pollen integral (APIn) and pollen season of principal woody and herbaceous plants in Tétouan were analysed over a 10-year monitoring period (2008–2017). Pollen was continuously sampled by means of a 7-day recording volumetric pollen trap by Burkard. Pollen trends were analysed by using Mann–Kendall tests and Sen’s slope. Aerobiological data were correlated with temperature and rainfall. A significant decreasing trend in annual minimum temperature was revealed together with significant decreasing trends in the APIn observed for Cupressaceae, Cannabis, Parietaria, Pinus and Quercus, this being highly significant for Cupressaceae and Pinus. On the contrary, the seasonal intensity of Mercurialis, Morus and Olea showed nonsignificant trends. Besides this, 77% of the studied pollen types showed a tendency to decreasing the peaks value, these trends being significant for Cupressaceae (−204.67 pollen/ m3 per year) and Pinus (−14.33 pollen/ m3 per year). The end of the Quercus pollen season showed a marked tendency to occur earlier across the years (−4.5 days/year) and the start day of Cannabis, Cupressaceae, Pinus and Poaceae to occur later (+ 7.13, 2.33, 1.67 and 2.5 day/year, respectively), shortening the duration of the respective pollen seasons but not with a significant trend. Regarding the association between the pollen season intensity and meteorological parameters, six pollen types showed at least one statistically significant coefficient correlation. The decreasing and significant trend in the intensity of the APIn diminishes also the exposure to airborne pollen for allergic sufferers, having implications in the field of public health. Decreasing trends in annual minimum temperature and the general lack of significant trends and correlation coefficients between the parameters of the pollen season of different pollen types and monthly mean temperatures and rainfall suggest that interannual variability in the data is due to human interventions, deforestation, fires and the opposite response of some species to warming in Fall/Winter and Spring, and this could be the reasons for the observed behaviour in the pollen season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboulaich, N., Mar Trigo, M., Bouziane, H., Cabezudo, B., Recio, M., El Kadiri, M., & Ater, M. (2013). Variations and origin of the atmospheric pollen of Cannabis detected in the province of Tetouan (NW Morocco): 2008–2010. Science of the Total Environment, 443, 413–419.

    Article  CAS  Google Scholar 

  • Achmakh, L., Bouziane, H., Aboulaich, N., Mar Trigo, M., Janati, A., & Kadiri, M. (2015). Airborne pollen of Olea europea L. in Tetouan (NW Morocco): Heat requirements and forecasts. Aerobiologia, 31, 191–199.

    Article  Google Scholar 

  • Aguilera, F., Ruiz-Valenzuela, L., Fornaciari, M., Romano, B., Galán, C., Oteros, J., Ben Dhiab, A., Msallem, M., & Orlandi, F. (2014). Heat accumulation period in the Mediterranean region: Phenological response of the olive in different climate areas (Spain, Italyand Tunisia). International Journal of Biometeorology, 58, 867–876.

    Article  Google Scholar 

  • Aguilera, F., Orlandi, F., Ruiz-Valenzuela, L., Msallem, M., & Fornaciari, M. (2015). Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agricultural and Forest Meteorology, 203, 208–216. https://doi.org/10.1016/j.agrformet.2014.11.019

    Article  Google Scholar 

  • Alcázar, P., Stach, A., Nowak, M., & Galán, C. (2009). Comparison of airborne herb pollen types in Cordoba (Southwestern Spain) and Poznan (Western Poland). Aerobiologia, 25, 55–63.

    Article  Google Scholar 

  • Alcázar, P., García-Mozo, H., Trigo, M. M., Ruiz, L., González-Minero, F. J., Hidalgo, P., Díaz de la Guardia, C., & Galán, C. (2011). Platanuspollen season in Andalusia (southern Spain): Trends and modeling. Journal of Environmental Monitoring, 13(9), 2502–2510.

    Article  CAS  Google Scholar 

  • Alizoti, P. G., Kilims, K., & Gallios, P. (2010). Temporal and spatial variation of flowering among PinusnigraArn Clones under changing climatic conditions. Forest Ecology and Management, 259(4), 786–797.

    Article  Google Scholar 

  • Ariano, R., Canonica, G. W., & Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology, 104(3), 215–222.

    Article  Google Scholar 

  • Bates, BC., Kundzewicz, ZW., Wu, S., Palutikof, JP., Eds. (2008). Climate change and water. Technical paper of the Intergovernmental panel on Climate Change, IPCC Secretariat, Geneva. Accessed at:http://www.ipcc.ch/publications_and_data/publications_and_data_technical_papers_climate_change_and_water.htm

  • Benabid, A. (1982). Etude phytoècologique, biogéographique et dynamique des associations et séries sylvatiques du Rif occidental (Maroc). Ph. D. Dissertation, Aix-en-Provence: Fac. Sc. Tech. St. Jérome. Univ. D'Aix-Marseille.

  • Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Davidson, O. (2007). Climate change 2007: Synthesis report (p. 22). Summary for policy makers.

    Google Scholar 

  • Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135(1), 126–146.

    Article  Google Scholar 

  • Bogawski, P., Grewling, Ł, Nowak, M., Smith, M., & Jackowiak, B. (2014). Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology, 58, 1759–1768.

    Article  Google Scholar 

  • Cariñanos, P., Alcázar, P., Galán, C., & Domínguez, E. (2014). Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Science of the Total Environment, 470, 480–487.

    Article  CAS  Google Scholar 

  • Cariñanos, P., Galan, C., Alcázar, P., & Dominguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany, 52(1), 11–22.

    Article  Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Domíınguez, E. (2010). Airbone pollen records and status of the anemophilous flora in arid areas of the Iberian Peninsula. Journal of Arid Environments, 74, 1102–1105.

  • Chmielewski, F. M., & Rötzer, T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101–112.

    Article  Google Scholar 

  • Chuine, I., Morin, X., Sonié, L., Collin, C., Fabreguettes, J., Degueldre, D., Salager, J.-L., & Roy, J. (2012). Climate change might increase the inva- sion potential of the alien C4 grass Setariaparviflora (Poaceae) in the Mediterranean Basin. Diversity and Distributions, 18(7), 661–672.

    Article  Google Scholar 

  • Ciani, F., Marchi, G., Dell’Olmo, L., Foggi, B., & Mariotti Lippi, M. (2020). Contribution of land cover and wind to the airborne pollen recorded in a South European urban area. Aerobiologia. https://doi.org/10.1007/s10453-020-09634-y

    Article  Google Scholar 

  • Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19, 227–234.

    Article  Google Scholar 

  • Cook, B. I., Wolkovich, M. E., & Parmesan, C. (2012). Divergent responses to spring and winter warming drive community level flowering trends. PNAS, 109(23), 9000–9005.

    Article  CAS  Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.

    Article  CAS  Google Scholar 

  • Deák, A. J., Makra, L., Matyasovszky, I., Csépe, Z., & Muladi, B. (2013). Climate sensitivity of allergenic taxa in Central Europe associated with new climate change related forces. Science and Total Environment, 442, 36–47.

    Article  CAS  Google Scholar 

  • Devadas, R., Huete, A. R., Vicendese, D., Erbas, B., Beggs, P. J., Medek, D., et al. (2018). Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Science of The Total Environment, 633, 441–451. https://doi.org/10.1016/j.scitotenv.2018.03.191

    Article  CAS  Google Scholar 

  • Driouech, F. (2010). Distribution des précipitations hivernales sur le Maroc dans le cadre d’un changement climatique : descente d’échelle et incertitudes. Dissertation. Toulouse University (SDU2E), 163pp.

  • EEA. (2012). Climate change, impacts and vulnerability in Europe 2012. An indicator-based report.

    Google Scholar 

  • El Haskouri, F., Bouziane, H., Trigo, M. M., Kadiri, M., & Kazzaz, M. (2016). Airborne ascospores in Tétouan (NW Morocco) and meteorological parameters. Aerobiologia, 32, 669–681. https://doi.org/10.1007/s10453-016-9440-8

    Article  Google Scholar 

  • Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & RantioLehtimäki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170.

    Article  CAS  Google Scholar 

  • Fernándezl-Lamazares, A., Belmonte, J., Delgado, R., & De linares, C. (2014). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia NE Spain. International Journal of Biometeorology, 58, 371–382.

    Article  Google Scholar 

  • Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.

    Article  Google Scholar 

  • Frenguelli, G., Tedeschini, E., Veronesi, F., & Bricchi, E. (2002). Airborne pine Pinus spp pollen in the atmosphere of Perugia Central Italy Behaviour of pollination in the two last decades. Aerobiologia, 18(3), 223–228.

    Article  Google Scholar 

  • Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., & Janssens, I. A. (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104–107. https://doi.org/10.1038/nature15402

    Article  CAS  Google Scholar 

  • Galán, C., Cariñanos, P., Alcázar, P., Domínguez-Vilches, E. (2007). Spanish Aerobiology Network (REA): management and quality manual. Córdoba, Spain: Ed. Servicio de publicaciones de la Universidad de Córdoba, 61 pp.

  • Galán, C., García-Mozo, H., Vazquez, L., Ruiz-Valenzuela, L., Díaz De La Guardia, C., & Trigo-Perez, M. (2005). Heat requirement for the onset of the Olea europaea L pollen season in several places of Andalusia region and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188.

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., Berger, U., Clot, B., Brandao, R., & EAS QC Working Group. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395. https://doi.org/10.1007/s10453-014-9335-5

    Article  Google Scholar 

  • Galán, C., Alcázar, P., Oteros, J., García-Mozo, H., Aira, M. J., Belmonte, J., Diaz de la Guardia, C., Fernández-González, D., Gutierrez-Bustillo, M., Moreno-Grau, S., Pérez-Badía, R., Rodríguez-Rajo, J., Ruiz-Valenzuela, L., Tormo, R., Trigo, M. M., & Domínguez-Vilches, E. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment, 550, 53–59.

    Article  CAS  Google Scholar 

  • Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminilogy for aerobiological studies. Aerobiologia, 33, 293–295. https://doi.org/10.1007/s10453-017-9496-50

    Article  Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C., & Araujo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344, 1247579–1247579. https://doi.org/10.1126/science.1247579

    Article  CAS  Google Scholar 

  • García-Mozo, H., Yaezel, L., Oteros, J., & Galán, C. (2014). Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Science of The Total Environment, 473–474, 103–109.

    Article  CAS  Google Scholar 

  • García-Mozo, H., Oteros, J. A., & Galán, C. (2016). Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Science of The Total Environment, 548–549, 221–228. https://doi.org/10.1016/j.scitotenv.2016.01.005

    Article  CAS  Google Scholar 

  • García-Mozo, H., Galán, C., Alcázar, P., Díaz de la Guardia, C., Nieto-Lugilde, D., Recio, M., et al. (2010a). Trends in grass pollen season in southern Spain. Aerobiologia, 26, 157–169.

    Article  Google Scholar 

  • García-Mozo, H., Mestre, A., & Galán, C. (2010b). Phenological trends in southern Spain: a response to climate change. Agricultural and Forest Meteorology, 150, 575–580.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Jato, V., Silva, I., Trigo, M. M., Valencia, R., & Chuine, I. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and ForestMeteorology, 149(2), 256–262.

    Google Scholar 

  • García-Mozo, H., Orlandi, F., Galán, C., Fornaciari, M., Romano, B., Ruiz, L., Díaz de la Guardia, C., Trigo, M. M., & Chuine, I. (2009). Olive flowering phenology variation between different cultivars in Spain and Italy: modelling analysis. Theoretical and AppliedClimatology, 95, 385.

    Google Scholar 

  • García-Mozo, H., Chuine, I., Aira, M. J., Belmonte, J., Bermejo, D., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Rodríguez-Rajo, J., Ruiz, L., Trigo, M. M., Tormo, R., Valencia, R., & Galán, C. (2008). Regional phenological models for forecasting the start and peak of the Quercuspollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.

    Article  Google Scholar 

  • Gordo, O., & Sanz, J. J. (2005). Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia, 146, 484–495.

    Article  Google Scholar 

  • Higgins, S. I., & Richardson, D. M. (1999). Predicting plant migration rates in a changing world: The role of long distance dispersal. The American Naturalist, 153(5), 464–475.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hyvönen, T., Glemnitz, M., Radics, L., & Hoffmann, J. (2011). Impact of climate and land use type on the distribution of Finnish casual arable weeds in Europe. Weed Research, 51, 201–208.

    Article  Google Scholar 

  • IPCC Climate Change (2014): Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.

  • Jaagus, J., & Ahas, R. (2000). Space–time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 15, 207–219.

    Article  Google Scholar 

  • Janati, A. (2019). Pollen de l’air de Tétouan (NW du Maroc) : paramètres météorologiques et modèles de prévision. Dissertation, University AbdelmalekEssâdi, Faculty of Science, Tétouan, Morocco, pp 381.

  • Jato, M. V., Rodríguez, F. J., & Seijo, M. C. (2000). Pinus pollen in the atmosphere of Vigo and its relationship to meteorological factors. International Journal of Biometeorology, 43(4), 147–153.

    Article  CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations — a review. Science of Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Katz, D. S. W., & Carey, T. S. (2014). Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales. Science of The Total Environment, 485–486, 435–440. https://doi.org/10.1016/j.scitotenv.2014.03.099

    Article  CAS  Google Scholar 

  • KendaTeranishi, H., Katoh, T., Kasuya, M., Oura, E., & Taira, H. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14(1), 65–70.

    Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. Charles Griffin.

    Google Scholar 

  • Lara, B., Rojo, J., Fernández-González, F., González-García-Saavedra, A., Serrano-Bravo, M. D., & Pérez-Badia, R. (2020). Impact of plane tree abundance on temporal and spatial variations in pollen concentration. Forests, 11, 817. https://doi.org/10.3390/f11080817

    Article  Google Scholar 

  • Makra, L., Matyasovszky, I., & Deák, A. J. (2011). Trends in the characteristics of allergenic pollen circulation in central Europe based on the example of Szeged, Hungary. Atmospheric Environment, 45, 6010–6018.

    Article  CAS  Google Scholar 

  • Mann, H. B. (1945). Non parametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Martínez-Bracero, M., Alcázar, P., Díaz de la Guardia, C., Gonzalez-Minero, F. J., Ruiz, L., Trigo Pérez, M. M., Galán, C. (2015). Pollen calendars, a guide to common, airborne pollen in Andalucia. Aerobiologia, 31, 549–557.

  • Maya-Manzano, J. M., Sadyś, M., Tormo-Molina, R., Fernández-Rodríguez, S., Oteros, J., Silva-Palacios, I., & Gonzalo-Garijo, A. (2017). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of The Total Environment, 584–585, 603–613. https://doi.org/10.1016/j.scitotenv.2017.01.085

    Article  CAS  Google Scholar 

  • Menzel, A., Sparks, T. (2006). Temperature and plant development, phenology and seasonality. Plant Growth and Climate Change, pp. 70–95, Blackwell Publishing Ltd.

  • Mercuri, A. M., Torri, P., Casini, E., & Olmi, L. (2013). Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy). Plant Biology, 15(s1), 70–82.

    Article  Google Scholar 

  • Montero, G. (2004). Pinus pine (“Pinuspinea L.”) in Andalusia: Ecology, distribution and forestry. Junta de Andalucía (Spain).

  • Munson, S. M., & Long, A. L. (2017). Climate drives shifts in grass reproductive phenology across the western USA. New Phytologist, 213, 1945–1955. https://doi.org/10.1111/nph.14327

    Article  Google Scholar 

  • Munson, S. M., Webb, R. H., Belnap, J., Hubbard, J. A., Swann, D. E., & Rutman, S. (2012). Forecasting climate change impacts to plant community composition in the Sonoran Desert region. Global Change Biology, 18(3), 1083–1095.

    Article  Google Scholar 

  • Newnham, R. M. (1999). Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia, 15, 87–94.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  CAS  Google Scholar 

  • Pastor-López, A., Taiqui, L., Bouziane, H., Riadi, H., Martín, JM. (1997). Structure of Quercussúber forests in Chefchaouen basin (NE. Morocco). Implications on management at a landscape scale. MEDITERRANEA, Serie de estudiosbiológicos, 65–76.

  • PDA (Provincial Direction of Agriculture of Tétouan). Ministry of Agriculture, Fisheries, Rural development, Water and Forests.

  • Peñuelas, J., & Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9, 131–140.

  • Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8(6), 531–544.

    Article  Google Scholar 

  • Piotrowska, C. (2008). Pollen production in selected species of anemophilous plants. Acta Agrobotanica, 61, 41–52.

    Article  Google Scholar 

  • Puc, M., & Wolski, T. (2013). Forecasting of the selected features of Poaceae R. Br. Barnh., Artemisia L and Ambrosia L. pollen season in Szczecin north-western Poland using Gumbel’s distribution. Annals of Agricultural and Environmental Medicine, 20(1), 36–47.

    Google Scholar 

  • Recio, M., Rodríguez-Rajo, F. J., Jato, V., Mar Trigo, M., & Cabezudo, B. (2009). The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo. ClimateChange, 97, 215–228.

    Google Scholar 

  • Recio, M., Docampo, S., García-Sanchez, J., Trigo, M. M., & Cabezudo, B. (2010). Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agricultural and Forest Meteorology, 150, 931–940.

    Article  Google Scholar 

  • Ridolo, E., Albertini, R., Giordano, D., Soliani, L., Usberti, I., & Dall’Aglio, pp. . (2007). Airborne pollen concentrations and the incidence of allergic asthma and rhinoconjunctivitis in northern Italy from 1992 to 2003. International Archives of Allergy and Immunology, 142, 151–157.

    Article  CAS  Google Scholar 

  • Rogers, C. A., Wayne, P. M., Macklin, E., Muilenberg, M. L., Wagner, C. J., Epstein, P. R., & Bazzaz, F. A. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L) pollen production. Environmental Health Perspectives, 88, 279–282.

    Google Scholar 

  • Rojo, J., Oteros, J., Pérez-Badia, R., Cervigón, P., Ferencova, Z., Gutiérrez-Bustillo, , et al. (2019). Near-ground effect of height on pollen exposure. Environmental Research, 174, 160–169. https://doi.org/10.1016/j.envres.2019.04.027

    Article  CAS  Google Scholar 

  • Rojo, J., Orlandi, F., Pérez-Badia, R., Aguilera, F., Ben Dhiab, A., Bouziane, H., et al. (2016). Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Science of The Total Environment, 551–552, 73–82. https://doi.org/10.1016/j.scitotenv.2016.01.193

    Article  CAS  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., Fernández-González, F., & Pérez-Badia, R. (2015). Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of The Total Environment, 538, 672–682. https://doi.org/10.1016/j.scitotenv.2015.08.074

    Article  CAS  Google Scholar 

  • Ruiz-Valenzuela, L., & Aguilera, F. (2018). Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective. Atmospheric environment, 180, 234–243. https://doi.org/10.1016/j.atmosenv.2018.03.012

    Article  CAS  Google Scholar 

  • Salmi, T., Maatta, A., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann– Kendall test and Sen’s slope estimates—the Excel template application MAKESENS (p. 31). Finnish Meteorological Institute.

    Google Scholar 

  • Schwartz, M. D., & Reiter, B. E. (2000). Changes in North American spring. International Journal of Climatology, 20(8), 929–932.

    Article  Google Scholar 

  • Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimäki, A., Caulton, E., Thibaudon, M., Sindt, C., Jäger, S., Gehrig, R., Frenguelli, G., Rodríguez-Rajo, F. J., Alcázar, P., & Galán, C. (2009). Influence of the North Atlantic oscillation on grass pollen counts in Europe. Aerobiologia, 25(4), 321–332.

    Article  Google Scholar 

  • Sparks, T. H., & Menzel, A. (2002). Observed changes in seasons: An overview. International Journal of Climatology, 22(14), 1715–1725.

    Article  Google Scholar 

  • Spieksma, F. Th. M., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia,19, 171–184.

  • Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short- term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.

    Article  Google Scholar 

  • Tormo-Molina, R., Gonzalo-Garijo, A., Silva-Palacios, I., & Muñoz- Rodríguez, A. (2010). General trends In Airborne pollen production and pollination periods at a mediterranean site (Badajoz, Soutwest, Spain). Journal of Investigational Allergology and Clinical Immunology, 20(7), 567–574.

    CAS  Google Scholar 

  • TCN (2016). 3 ème Communication Nationale du Maroc à la Convention Cadre des Nations Unies sur les Changements Climatiques. Accessed at: https://www.4c.ma/fr/mediatheque/docutheque/troisieme-communication-nationale-du-maroc-la-convention-cadre-de-nations.

  • Trigo, M. M., Jato, V., Fernandez, D., & Galán, C. (2008). Atlas Aeropalinologico de España. Junta de Castilla y León.

    Google Scholar 

  • Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia, 29, 113–120.

    Article  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

    Article  CAS  Google Scholar 

  • Weber, R. W. (2002). Mother nature strikes back: Global warming homeostasis and implications for allergy. Annals of Allergy, Asthma & Immunology, 88, 251–252.

    Article  Google Scholar 

  • Ziello, C., Böck, A., Estrella, N., Ankerst, D., & Menzel, A. (2012a). First flowering of wind-pollinated species with the greatest phenological advances in Europe. Ecography, 35, 1017–1023. https://doi.org/10.1111/j.1600-0587.2012.07607.x

    Article  Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012b). Changes to airborne pollen counts across Europe. PLoS ONE, 7(4), e34076.

    Article  CAS  Google Scholar 

  • Ziska, L. H., Makra, L., Harry, S. K., Bruffaerts, N., Hendrickx, M., Coates, F., et al. (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. The Lancet Planetary Health, 3, e124–e131. https://doi.org/10.1016/S2542-5196(19)30015-4

    Article  Google Scholar 

  • Ziska, L. H., & Beggs, P. J. (2012). Anthropogenic climate change and allergen exposure: The role of plant biology. The Journal of Allergy and Clinical Immunology, 129(1), 27–32.

    Article  Google Scholar 

  • Ziska, L. H., & Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: Implications for public health. Australian Journal of Plant Physiology, 27, 893–898.

    Google Scholar 

Download references

Acknowledgements

We thank Pr. Mohamed Kadiri from the Applied Botany Laboratory of the University Abdelmalek Essaâdi for his countless help and comments during manuscript preparation. We are also grateful to Prof. Carmen Galán from the University of Cordoba for our stay in the Aerobiology Laboratory and the team members Moisés Martinez-Bracero and Maria-José Velasco-Jimenez for the statistical advice and to Prof. Maria Del Mar Trigo from the University of Malaga for revising the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Bouziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boullayali, A., Elhassani, L., Janati, A. et al. Airborne pollen trends in Tétouan (NW of Morocco). Aerobiologia 37, 479–505 (2021). https://doi.org/10.1007/s10453-021-09700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09700-z

Keywords

Navigation