Skip to main content
Log in

Project Portfolio Selection Considering Uncertainty: Stochastic Dominance-Based Fuzzy Ranking

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a method for project selection based on stochastic dominance (SD) and fuzzy theory. Using fuzzy theory and stochastic dominance, the method is tested using data from real-world projects. The findings show the importance of the proposed methodology improved existing methods in two ways: (1) This research alleviates the subjective bias in risk assessment in estimating the expected value hidden in the project portfolio (2) Adding the stochastic dominance rule to the fuzzy ranking process contributes to efficiency in project portfolio selection. The study contributes to the literature by exploring the combination of both fuzzy theory and stochastic dominance. For practitioner significance, managers can identify key uncertainty factors and estimate value in managing project portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aarseth, W., Ahola, T., Aaltonen, K., Økland, A., Andersen, B.: Project sustainability strategies: a systematic literature review. Int. J. Project Manage. 35(6), 1071–1083 (2017)

    Google Scholar 

  2. Akkermans, J., Keegan, A., Huemann, M., Ringhofer, C.: Crafting project managers’ careers: integrating the fields of careers and project management. Project Manag. J. 51(2), 135–153 (2020)

    Google Scholar 

  3. Alghamdi, M., Alshehri, N.O., Akram, M.: Multi-criteria decision-making methods in bipolar fuzzy environment. Int. J. Fuzzy Syst. 20(6), 2057–2064 (2018)

    Google Scholar 

  4. Anantatmula, V.S., Rad, P.F.: Role of organizational project management maturity factors on project success. Eng. Manage. J. 30(3), 165–178 (2018)

    Google Scholar 

  5. Archer, N.P., Ghasemzadeh, F.: An integrated framework for project portfolio selection. Int. J. Project Manage. 17(4), 207–216 (1999)

    Google Scholar 

  6. Arvanitis, S., Scaillet, O., Topaloglou, N.: Spanning tests for Markowitz stochastic dominance. J. Econometr. 217(2), 291–311 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Awasthi, A., Omrani, H.: A goal-oriented approach based on fuzzy axiomatic design for sustainable mobility project selection. Int. J. Syst. Sci. 6(1), 86–98 (2019)

    Google Scholar 

  8. Azimi, S., Rahmani, R., Fateh-rad, M.: Investment cost optimization for industrial project portfolios using technology mining. Technol. Forecast. Soc. Chang. 138, 243–253 (2019)

    Google Scholar 

  9. Baccarini, D.: The concept of project complexity—a review. Int. J. Project Manage. 14(4), 201–204 (1996)

    Google Scholar 

  10. Ballesteros-Pérez, P., Cerezo-Narváez, A., Otero-Mateo, M., Pastor-Fernández, A., Zhang, J., Vanhoucke, M.: Forecasting the project duration average and standard deviation from deterministic schedule information. Appl. Sci. 10(2), 654 (2020)

    Google Scholar 

  11. Banerjee, S.: Contravention between NPV & IRR due to timing of cash flows: a case of capital budgeting decision of an oil refinery company. Am. J. Theor. Appl. Bus. 1(2), 48–52 (2015)

    Google Scholar 

  12. Baqeri, K., Mohammadi, E., Gilani, M.: Multi objective project portfolio selection. J. Project Manage. 4(4), 249–256 (2019)

    Google Scholar 

  13. Barucke Marcondes, G.A., Leme, R.C., Leme, M.D.S., Sanches da Silva, C.E.: Using mean-Gini and stochastic dominance to choose project portfolios with parameter uncertainty. Eng. Econ. 62(1), 33–53 (2017)

    Google Scholar 

  14. Batselier, J., Vanhoucke, M.: Construction and evaluation framework for a real-life project database. Int. J. Project Manage. 33(3), 697–710 (2015)

    Google Scholar 

  15. Biswas, T.K., Zaman, K.: A fuzzy-based risk assessment methodology for construction projects under epistemic uncertainty. Int. J. Fuzzy Syst. 21(4), 1221–1240 (2019)

    MathSciNet  Google Scholar 

  16. Black, M.: Vagueness. An exercise in logical analysis. Philosophy of science 4(4), 427–455 (1937)

    MathSciNet  Google Scholar 

  17. Błaszczyk, T., Nowak, M.: Multiple-criteria interactive procedure in project management. In: A. K. Zavadskas, M. J. Skibniewski (eds.) The 25th International Symposium on Automation and Robotics in Construction, Lithuania, pp. 533–540 (2008)

  18. Bruni, R., Cesarone, F., Scozzari, A., Tardella, F.: On exact and approximate stochastic dominance strategies for portfolio selection. Eur. J. Oper. Res. 259(1), 322–329 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Buch, V., Damle, P.: Project portfolio stakeholder identification and classification: an empirical study. J. Manage. Res. 19(3), 145–156 (2019)

    Google Scholar 

  20. Cakmakci, M.: Interaction in Project Management Approach Within Industry 4.0. Advances in Manufacturing II, pp. 176–189. Springer, New York (2019)

    Google Scholar 

  21. Carlsson, C., Fullér, R., Heikkilä, M., Majlender, P.: A fuzzy approach to R&D project portfolio selection. Int. J. Approximate Reason. 44(2), 93–105 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Chen, S.-P., Hsueh, Y.-J.: A simple approach to fuzzy critical path analysis in project networks. Appl. Math. Model. 32(7), 1289–1297 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Cheng, C.-H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95(3), 307–317 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Cheshmberah, M.: Projects portfolio determination based on key stakeholders’ expectations and requirements: evidence from public university projects. J. Project Manage. 5(2), 139–150 (2020)

    Google Scholar 

  25. Costa, H.R., Barros, M.D.O., Travassos, G.H.: Evaluating software project portfolio risks. J. Syst. Softw. 80(1), 16–31 (2007)

    Google Scholar 

  26. Damnjanovic, I., Reinschmidt, K.: Project Risk Management Fundamentals. Data Analytics for Engineering and Construction Project Risk Management, pp. 23–41. Springer, New York (2020)

    Google Scholar 

  27. Danesh, D., Ryan, M.J., Abbasi, A.: A systematic comparison of multi-criteria decision making methods for the improvement of project portfolio management in complex organisations. Int. J. Manage. Decision Making 16(3), 280–320 (2017)

    Google Scholar 

  28. Daskalaki, C., Skiadopoulos, G., Topaloglou, N.: Diversification benefits of commodities: a stochastic dominance efficiency approach. J. Emp. Finance 44, 250–269 (2017)

    Google Scholar 

  29. Di Matteo, M., Maier, H.R., Dandy, G.C.: Many-objective portfolio optimization approach for stormwater management project selection encouraging decision maker buy-in. Environ. Model. Softw. 111, 340–355 (2019)

    Google Scholar 

  30. Dixit, V., Tiwari, M.K.: Project portfolio selection and scheduling optimization based on risk measure: a conditional value at risk approach. Ann. Oper. Res. 285(1–2), 9–33 (2020)

    MathSciNet  Google Scholar 

  31. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Durmuşoğlu, Z.D.U.: Assessment of techno-entrepreneurship projects by using Analytical Hierarchy Process (AHP). Technol. Soc. 54, 41–46 (2018)

    Google Scholar 

  33. Esfahani, H.N., Hossein Sobhiyah, M., Yousefi, V.R.: Project portfolio selection via harmony search algorithm and modern portfolio theory. Procedia-Soc. Behav. Sci. 226, 51–58 (2016)

    Google Scholar 

  34. Gemünden, H.G., Lehner, P., Kock, A.: The project-oriented organization and its contribution to innovation. Int. J. Project Manage. 36(1), 147–160 (2018)

    Google Scholar 

  35. Haehl, C., Spinler, S.: Technology choice under emission regulation uncertainty in international container shipping. Eur. J. Oper. Res. 284(1), 383–396 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Hillier, F.S.: The derivation of probabilistic information for the evaluation of risky investments. Manage. Sci. 9(3), 443–457 (1963)

    Google Scholar 

  37. Hopkinson, M.: The case for project net present value (NPV) and NPV risk models. PM World J. 5(6), 1–9 (2016)

    Google Scholar 

  38. Huang, X., Zhao, T., Kudratova, S.: Uncertain mean-variance and mean-semivariance models for optimal project selection and scheduling. Knowl.-Based Syst. 93, 1–11 (2016)

    Google Scholar 

  39. Jafarzadeh, H., Akbari, P., Abedin, B.: A methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency–combination of fuzzy QFD and DEA. Expert Syst. Appl. 110, 237–249 (2018)

    Google Scholar 

  40. Jeng, D.J.-F., Huang, K.-H.: Strategic project portfolio selection for national research institutes. J. Bus. Res. 68(11), 2305–2311 (2015)

    Google Scholar 

  41. Jeunet, J., Orm, M.B.: Optimizing temporary work and overtime in the Time Cost Quality Trade-off Problem. Eur. J. Oper. Res. 284(2), 743–761 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Jin, G., Sperandio, S., Girard, P.: Management of the design process: human resource allocation and project selection in factories of the future. Syst. Issue 22(4), 17–19 (2020)

    Google Scholar 

  43. Karasakal, E., Aker, P.: A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega 73, 79–92 (2017)

    Google Scholar 

  44. Kay, J., King, M.: Radical Uncertainty: Decision-Making Beyond the Numbers. WW Norton & Company, New York (2020)

    Google Scholar 

  45. Kerzner, H., Kerzner, H.R.: Project Management: A Systems Approach to Planning, Scheduling, and Controlling. Wiley, Hoboken (2017)

    MATH  Google Scholar 

  46. Kopmann, J., Kock, A., Killen, C.P.: Project Portfolio Management: The Linchpin in Strategy Processes. Cambridge Handbook of Organizational Project Management. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  47. Kordova, S., Katz, E., Frank, M.: Managing development projects—The partnership between project managers and systems engineers. Syst. Eng. 22(3), 227–242 (2019)

    Google Scholar 

  48. Korhonen, T., Laine, T., Martinsuo, M.: Management control of project portfolio uncertainty: a managerial role perspective. Project Manage. J. 45(1), 21–37 (2014)

    Google Scholar 

  49. Korotkov, V., Wu, D.: Evaluating the quality of solutions in project portfolio selection. Omega 91, 102029 (2020)

    Google Scholar 

  50. Kusy, M.I., Ziemba, W.T.: A bank asset and liability management model. Oper. Res. 34(3), 356–376 (1986)

    Google Scholar 

  51. Lahtinen, N., Mustonen, E., Harkonen, J.: Commercial and technical productization for fact-based product portfolio management over lifecycle. IEEE Trans. Eng. Manage. (2019). https://doi.org/10.1109/TEM.2019.2932974

    Article  Google Scholar 

  52. Lee, E., Li, R.-J.: Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput. Math. Appl. 15(10), 887–896 (1988)

    MathSciNet  MATH  Google Scholar 

  53. Levy, H.: Stochastic dominance: Investment decision making under uncertainty. Springer, New York (2015)

    MATH  Google Scholar 

  54. Li, X., Huang, Y.-H., Fang, S.-C., Zhang, Y.: An alternative efficient representation for the project portfolio selection problem. Eur. J. Oper. Res. 281(1), 100–113 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Liu, F., Chen, Y.-W., Yang, J.-B., Xu, D.-L., Liu, W.: Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule. Int. J. Project Manage. 37(1), 87–97 (2019)

    Google Scholar 

  56. Liu, P., Zhu, B., Wang, P.: A multi-attribute decision-making approach based on spherical fuzzy sets for Yunnan Baiyao’s R&D project selection problem. Int. J. Fuzzy Syst. 21(7), 2168–2191 (2019)

    Google Scholar 

  57. Ma, J., Harstvedt, J.D., Jaradat, R., Smith, B.: Sustainability driven multi-criteria project portfolio selection under uncertain decision-making environment. Comput. Ind. Eng. 140, 106236 (2020)

    Google Scholar 

  58. Martinsuo, M., Korhonen, T., Laine, T.: Identifying, framing and managing uncertainties in project portfolios. Int. J. Project Manage. 32(5), 732–746 (2014)

    Google Scholar 

  59. Martinsuo, M., Lehtonen, P.: Role of single-project management in achieving portfolio management efficiency. Int. J. Project Manage. 25(1), 56–65 (2007)

    Google Scholar 

  60. Martinsuo, M., Lehtonen, P.: Project autonomy in complex service development networks. Int. J. Manag. Projects Bus. 2(2), 261–281 (2009)

    Google Scholar 

  61. Meskendahl, S.: The influence of business strategy on project portfolio management and its success—a conceptual framework. Int. J. Project Manage. 28(8), 807–817 (2010)

    Google Scholar 

  62. Moeini, M., Rivard, S.: Sublating tensions in the IT project risk management literature: a model of the relative performance of intuition and deliberate analysis for risk assessment. J. Assoc. Inf. Syst. 20(3), 243–284 (2019)

    Google Scholar 

  63. Mohamed, S., McCowan, A.K.: Modelling project investment decisions under uncertainty using possibility theory. Int. J. Project Manage. 19(4), 231–241 (2001)

    Google Scholar 

  64. Moselhi, O., Deb, B.: Project selection considering risk. Constr. Manage. Econ. 11(1), 45–52 (1993)

    Google Scholar 

  65. Muhuri, P.K., Nath, R., Shukla, A.K.: Energy efficient task scheduling for real-time embedded systems in a fuzzy uncertain environment. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2968864

    Article  Google Scholar 

  66. Namazian, A., Haji Yakhchali, S., Rabbani, M.: Integrated bi-objective project selection and scheduling using Bayesian networks: a risk-based approach. Scientiairanica 26(6), 3695–3711 (2019)

    Google Scholar 

  67. Ogwueleka, A.: Stochastic dominance in projects. Int. J. Project Organ. Manage. 2(2), 208–217 (2010)

    Google Scholar 

  68. Olson, D.L., Wu, D.: Portfolio Selection Under Fuzzy and Stochastic Uncertainty. Enterprise Risk Management Models, pp. 171–183. Springer, New York (2010)

    Google Scholar 

  69. Orgut, R.E., Batouli, M., Zhu, J., Mostafavi, A., Jaselskis, E.J.: Critical factors for improving reliability of project control metrics throughout project life cycle. J. Manage. Eng. 36(1), 04019033 (2020)

    Google Scholar 

  70. Owusu, E.K., Chan, A.P., Shan, M.: Causal factors of corruption in construction project management: an overview. Sci. Eng. Ethics 25(1), 1–31 (2019)

    Google Scholar 

  71. Pajares, J., López, A.: New methodological approaches to project portfolio management: the role of interactions within projects and portfolios. Procedia 119, 645–652 (2014)

    Google Scholar 

  72. Pal, N.R., Bezdek, J.C.: Measuring fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 2(2), 107–118 (1994)

    Google Scholar 

  73. Park, C.S., Sharp-Bette, G.P.: Advanced Engineering Economics. Wiley, Hoboken (1990)

    Google Scholar 

  74. Perez, F., Gomez, T.: Multiobjective project portfolio selection with fuzzy constraints. Ann. Oper. Res. 245(1–2), 7–29 (2016)

    MathSciNet  MATH  Google Scholar 

  75. Petro, Y., Ojiako, U., Williams, T., Marshall, A.: Organizational ambidexterity: using project portfolio management to support project-level ambidexterity. Prod. Plan. Control 31(4), 287–307 (2020)

    Google Scholar 

  76. Piryonesi, S.M., Nasseri, M., Ramezani, A.: Resource leveling in construction projects with activity splitting and resource constraints: a simulated annealing optimization. Can. J. Civ. Eng. 46(2), 81–86 (2019)

    Google Scholar 

  77. Pramanik, D., Mondal, S.C., Haldar, A.: A framework for managing uncertainty in information system project selection: an intelligent fuzzy approach. Int. J. Manage. Sci. Eng. Manage. 15(1), 70–78 (2020)

    Google Scholar 

  78. Qi, Y., Li, X., Zhang, S.: Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. J. Ind. Manage. Opt. 13(5), 1 (2017)

    Google Scholar 

  79. Radziszewska-Zielina, E., Śladowski, G., Kania, E., Sroka, B., Szewczyk, B.: Managing information flow in self-organising networks of communication between construction project participants. Arch. Civil Eng. 65(2), 133–148 (2019)

    MATH  Google Scholar 

  80. Ringuest, J.L., Graves, S.B., Case, R.H.: Mean–Gini analysis in R&D portfolio selection. Eur. J. Oper. Res. 154(1), 157–169 (2004)

    MATH  Google Scholar 

  81. Saaty, T.L., Vargas, L.G.: Hierarchical analysis of behavior in competition - prediction in chess. Behav. Sci. 25(3), 180–191 (1980)

    Google Scholar 

  82. Sanchez, O.P., Terlizzi, M.A.: Cost and time project management success factors for information systems development projects. Int. J. Project Manage. 35(8), 1608–1626 (2017)

    Google Scholar 

  83. Schreiber, S., Zöphel, C., Fraunholz, C., Reiter, U., Herbst, A., Fleiter, T., Möst, D.: Experience Curves in Energy Models—Lessons Learned from the REFLEX Project. Technological Learning in the Transition to a Low-Carbon Energy System. Academic Press, London (2020)

    Google Scholar 

  84. Shaygan, A., Testik, Ö.M.: A fuzzy AHP-based methodology for project prioritization and selection. Soft. Comput. 23(4), 1309–1319 (2019)

    Google Scholar 

  85. Son, J., Khwaja, N., Milligan, D.S.: Planning-phase estimation of construction time for a large portfolio of highway projects. J. Constr. Eng. Manage. 145(4), 04019018 (2019)

    Google Scholar 

  86. Stamelos, I., Angelis, L.: Managing uncertainty in project portfolio cost estimation. Inf. Softw. Technol. 43(13), 759–768 (2001)

    Google Scholar 

  87. Sundqvist, E.: The role of project managers as improvement agents in project-based organizations. Project Manage. J. 50(3), 376–390 (2019)

    Google Scholar 

  88. Szilágyi, I., Sebestyén, Z., Tóth, T.: Project ranking in petroleum exploration. Eng. Econ. 65(1), 66–87 (2020)

    Google Scholar 

  89. Tayyab, M., Sarkar, B., Yahya, B.N.: Imperfect multi-stage lean manufacturing system with rework under fuzzy demand. Mathematics 7(1), 13 (2019)

    Google Scholar 

  90. Toloo, M., Nalchigar, S., Sohrabi, B.: Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach. CEJOR 26(4), 1027–1051 (2018)

    MathSciNet  MATH  Google Scholar 

  91. Tonchia, S.: Industrial Project Management. Springer, Berlin (2018)

    Google Scholar 

  92. Tseng, C.-C., Liu, B.-S.: Hybrid Taguchi-genetic algorithm for selecting and scheduling a balanced project portfolio. J. Sci. Eng. Technol. 7(1), 11–18 (2011)

    Google Scholar 

  93. Tsetlin, I., Winkler, R.L.: Multivariate almost stochastic dominance. J. Risk Insurance 85(2), 431–445 (2018)

    Google Scholar 

  94. Vanhoucke, M.: Measuring the efficiency of project control using fictitious and empirical project data. Int. J. Project Manage. 30(2), 252–263 (2012)

    Google Scholar 

  95. Vanhoucke, M., Coelho, J., Batselier, J.: An overview of project data for integrated project management and control. J. Modern Project Manage. 3(2), 6–21 (2016)

    Google Scholar 

  96. Voss, M., Kock, A.: Impact of relationship value on project portfolio success—investigating the moderating effects of portfolio characteristics and external turbulence. Int. J. Project Manage. 31(6), 847–861 (2013)

    Google Scholar 

  97. Wei, C.-C., Cheng, Y.-L., Lee, K.-L.: How to select suitable manufacturing information system outsourcing projects by using TOPSIS method. Int. J. Prod. Res. 57(13), 4333–4350 (2019)

    Google Scholar 

  98. Wong, E.T., Norman, G., Flanagan, R.: A fuzzy stochastic technique for project selection. Constr. Manage. Econ. 18(4), 407–414 (2000)

    Google Scholar 

  99. Wu, L.-C., Ong, C.-S.: Management of information technology investment: a framework based on a Real Options and Mean-Variance theory perspective. Technovation 28(3), 122–134 (2008)

    Google Scholar 

  100. Yan, S., Ji, X.: Portfolio selection model of oil projects under uncertain environment. Softw. Comput. 22(17), 5725–5734 (2018)

    Google Scholar 

  101. Yang, Y.-Y., Liu, X.-W., Liu, F.: Trapezoidal interval type-2 fuzzy TOPSIS using alpha-cuts. Int. J. Fuzzy Syst. 22(1), 293–309 (2020)

    MathSciNet  Google Scholar 

  102. Yitzhaki, S.: Stochastic dominance, mean variance, and Gini’s mean difference. The American Economic Review 72(1), 178–185 (1982)

    Google Scholar 

  103. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  104. Zhai, J., Bai, M.: Mean-risk model for uncertain portfolio selection with background risk. J. Comput. Appl. Math. 330, 59–69 (2018)

    MathSciNet  MATH  Google Scholar 

  105. Zhang, J., Chen, X., Sun, Q.: An assessment model of safety production management based on fuzzy comprehensive evaluation method and behavior-based safety. Math. Probl. Eng. 219, 1–11 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchuan Wu.

Appendix

Appendix

1.1 Illustrative Real-World Case. Staff Authorization System (Project Code C2015-11)

Under the work breakdown structure (WBS), a project consists of five major activities and 13 sub-activities, as shown in Table 13. Using the connections between activities in the Gantt chart, the relationships are shown clearly (Fig. 6). The baseline schedule is used to modify and execute the project on time.

Table 13 Baseline schedule
Fig. 6
figure 6

Source OR-AS Database: Staff Authorization System Data (C2015-11)

Gantt chart of the baseline schedule.

Because activities may not complete in a pre-defined duration, the uncertainty should be given as a fuzzy characteristic. Generally, managers define activities using different uncertainties in three scenarios: optimistic, most probable, and pessimistic. For convenience of analysis, this paper defines a symmetric triangular fuzzy number for each activity with uncertainty, as shown in Fig. 7.

Fig. 7
figure 7

Source OR-AS Database: Staff Authorization System Data (C2015-11)

Schedule risk analysis specification.

After constructing the baseline schedule and estimating the uncertainty in the activity durations, manager performs the schedule risk analysis (SRA). The SRA analysis is based on the CPM, which calculates the longest path of the planned activities. The importance of CPM is that it identifies the critical activities in the project. If the activity is marked critical, its total float should be zero and it should not delay the termination of the project (Table 14). Finally, after 1000 Monte Carlo simulation runs, the average number of the critical indicator is about 30.3%. This metric helps managers to quantify the schedule risk (endogenous risk) and is useful in defining the fuzzy number of the expected value.

Table 14 Calculation in CI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LH., Wu, L., Shi, J. et al. Project Portfolio Selection Considering Uncertainty: Stochastic Dominance-Based Fuzzy Ranking. Int. J. Fuzzy Syst. 23, 2048–2066 (2021). https://doi.org/10.1007/s40815-021-01069-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01069-y

Keywords

Navigation