Skip to main content
Log in

Probability Distribution-Based Processing Model of Probabilistic Linguistic Term Set and Its Application in Automatic Environment Evaluation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The probabilistic linguistic term set (PLTS) is an effective tool for describing linguistic value in the process of decision-making. However, due to its complex structure, there remains numerous defects in utilizing the PLTS information. Therefore, by connecting the PLTS with discrete probability distribution, this study investigates a novel probability distribution-based processing model to process PLTS and further develops a practical multi-criteria decision-making (MCDM) approach for addressing automatic environmental monitoring evaluation problem. First, we propose two types of pre-processing methods to complete probability normalization. Accordingly, the normalized PLTS is represented in the form of probabilistic linguistic probability distribution (PLPD). Then, probabilistic linguistic earth-mover (PLEM) distance is constructed to measure the divergency between PLPDs, and a probabilistic linguistic probability distribution weighted mean (PLPDWM) is also developed to facilitate information fusion. On this basis, an aggregation operator-based MCDM approach is established that integrates the probability distribution-based PLTS processing methods and the proposed worst-priority weight (WPW) method. Finally, the developed approach is demonstrated by solving a practical atmospheric pollutant evaluation problem and its strengths are verified through further sensitivity analysis and comparative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jana, C., Pal, M., Wang, J.Q.: Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision making. Soft Comput. 24(5), 3631–3646 (2020)

    Article  Google Scholar 

  2. Tian, Z.P., Wang, J., Wang, J.Q., Chen, X.H.: Multi-criteria decision-making approach based on gray linguistic weighted Bonferroni mean operator. Int. Trans. Oper. Res. 5(5), 1635–1658 (2015)

    Article  Google Scholar 

  3. Wu, X.H., Wang, J.Q., Peng, J.J., Chen, X.H.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 18, 1104–1116 (2016)

    Article  Google Scholar 

  4. Huang, R.L., Zhang, H.Y., Peng, J.J., Wang, J.Q., Lv, Y.J.: Group decision-making based on set theory and weighted geometric operator with interval rough multiplicative reciprocal matrix. Int. J. Fuzzy Syst. 22, 1815–1831 (2020)

    Article  Google Scholar 

  5. Nie, R.X., Wang, J.Q., Wang, T.L.: A three-cycle decision-making selection mechanism with intuitionistic trapezoidal fuzzy preference relations. J. Intell. Fuzzy Syst. 36(6), 5409–5422 (2019)

    Article  Google Scholar 

  6. Hu, J.H., Yang, Y., Zhang, X.L., Chen, X.H.: Similarity and entropy measures for hesitant fuzzy sets. Int. Trans. Oper. Res. 25(3), 857–886 (2018)

    Article  MathSciNet  Google Scholar 

  7. Zeng, S.Z., Baležentis, T., Chen, J., Luo, G.F.: A projection method for multiple attribute group decision making with intuitionistic fuzzy information. Informatica 24(3), 485–503 (2013)

    Article  MathSciNet  Google Scholar 

  8. Qiao, D., Wang, X.K., Wang, J.Q., Chen, K.: Cross entropy for discrete Z-numbers and its application in multi-criteria decision-making. Int. J. Fuzzy Syst. 21, 1786–1800 (2019)

    Article  Google Scholar 

  9. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  10. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)

    Article  MathSciNet  Google Scholar 

  11. Herrera, F., Herrera-Viedma, E., Martinez, L.: A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets Syst. 114(1), 43–58 (2000)

    Article  Google Scholar 

  12. Herrera, F., Herrera-Viedma, E., Martinez, L.: A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans. Fuzzy Syst. 16(2), 354–370 (2008)

    Article  Google Scholar 

  13. Liu, P.: Some generalized dependent aggregation operators with intuitionistic linguistic numbers and their application to group decision making. J. Comput. Syst. Sci. 79(1), 131–143 (2013)

    Article  MathSciNet  Google Scholar 

  14. Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)

    Article  Google Scholar 

  15. Ye, J.: Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method. Inf. Sci. 8(3), 110 (2017)

    Google Scholar 

  16. Jan, N., Zedam, L., Mahmood, T., Ullah, K., Ali, Z.: Multiple attribute decision making method under linguistic cubic information. J. Intell. Fuzzy Syst. 36(1), 253–269 (2019)

    Article  Google Scholar 

  17. Wang, X.K., Wang, Y.T., Wang, J.Q., Cheng, P.F.: A TODIM-PROMETHEE II based multi-criteria group decision making method for risk evaluation of water resource carrying capacity under probabilistic linguistic Z-number circumstances. Mathematics 8(7), 1190 (2020)

    Article  Google Scholar 

  18. Pang, Q., Wang, H., Xu, Z.S.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016)

    Article  Google Scholar 

  19. Peng, J.J., Tian, C., Zhang, W.Y., Zhang, S., Wang, J.Q.: An integrated multi-criteria decision-making framework for sustainable supplier selection under picture fuzzy environment. Technol. Econ. Dev. Econ. (2020). https://doi.org/10.3846/tede.2020.12110

    Article  Google Scholar 

  20. Shen, K.W., Li, L., Wang, J.Q.: Circular economy model for recycling waste resources under government participation: a case study in industrial waste water circulation in China. Technol. Econ. Dev. Econ. 26(1), 21–27 (2020)

    Article  Google Scholar 

  21. Hu, J.H., Zhang, X.H., Yang, Y., Liu, Y.M., Chen, X.H.: New doctors ranking system based on VIKOR method. Int. Trans. Oper. Res. 27(2), 1236–1261 (2020)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y., Hu, J.H., Liu, Y.M., Chen, X.H.: Doctor recommendation based on an intuitionistic normal cloud model considering patient preferences. Cogn. Comput. 12, 460–478 (2020)

    Article  Google Scholar 

  23. Tian, C., Peng, J.J., Zhang, W.Y., Zhang, S., Wang, J.Q.: Tourism environmental impact assessment based on improved AHP and picture fuzzy PROMETHEE II methods. Technol. Econ. Dev. Econ. 26(2), 355–378 (2020)

    Article  Google Scholar 

  24. Song, C., Wang, X.K., Cheng, P.F., Wang, J.Q., Li, L.: SACPC: A framework based on probabilistic linguistic terms for short text sentiment analysis. Knowl. Based Syst. (2020). https://doi.org/10.1016/j.knosys.2020.105572

    Article  Google Scholar 

  25. Nie, R.X., Tian, Z.P., Chin, K.S., Wang, J.Q.: Implementing healthcare service quality enhancement using a cloud-support QFD model integrated with TODIM method and linguistic distribution assessments. J. Oper. Res. Soc. (2020). https://doi.org/10.1080/01605682.2020.1824554

    Article  Google Scholar 

  26. Liao, H.C., Mi, X.M., Xu, Z.S.: A survey of decision-making methods with probabilistic linguistic information: bibliometrics, preliminaries, methodologies, applications and future directions. Fuzzy Optim. Decis. Mak. 19, 81–134 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ross, S.M.: 1-Introduction to Probability Theory. In: Ross, S.M. (ed.) Introduction to Probability Models (Twelfth Edition), pp. 1–21. Academic Press, San Diego (2019)

    Google Scholar 

  28. Nowaková, J., Prílepok, M., Snášel, V.: Medical image retrieval using vector quantization and fuzzy s-tree. J. Med. Syst. 41(18), 1–16 (2017)

    Google Scholar 

  29. Cheng, C., Zhou, B.T., Ma, G.J., Wu, D.R., Yuan, Y.: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data. Neurocomputing 409(7), 35–45 (2020)

    Article  Google Scholar 

  30. Martin, A., Soumith, C., Léon, B.: Wasserstein GAN. arXiv e-prints (2017).

  31. Song, Y.M., Li, G.X.: A large-scale group decision-making with incomplete multi-granular probabilistic linguistic term sets and its application in sustainable supplier selection. J. Oper. Res. Soc. 70(5), 827–841 (2019). https://doi.org/10.1080/01605682.2018.1458017

    Article  Google Scholar 

  32. Zhang, Y.X., Xu, Z.S., Wang, H., Liao, H.C.: Consistency-based risk assessment with probabilistic linguistic preference relation. Appl. Soft Comput. 49, 817–833 (2016)

    Article  Google Scholar 

  33. Wu, X.L., Liao, H.C., Xu, Z.S., Hafezalkotob, A., Herrera, F.: Probabilistic linguistic MULTIMOORA: a multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Trans. Fuzzy Syst. 26(6), 3688–3702 (2018)

    Article  Google Scholar 

  34. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision, Bombay, India, 7–7 January 1998, pp. 59–66

  35. Ross, S.M.: 2-Random Variables. In: Ross, S.M. (ed.) Introduction to Probability Models (Twelfth Edition), pp. 23–99. Academic Press, San Diego (2019)

    Chapter  Google Scholar 

  36. Li, Y., Wang, J.Q., Wang, J.: A hybrid fuzzy profiling-nonnegative latent factor model considering consumer preference at different levels. Symmetry 12(9), 1399 (2020)

    Article  Google Scholar 

  37. Deng, W., Xu, J.J., Song, Y.J., Zhao, H.M.: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2020.106724

    Article  Google Scholar 

  38. Deng, W., Xu, J.J., Zhao, H.M., Song, Y.J.: A novel gate resource allocation method using improved PSO-based QEA. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3025796

    Article  Google Scholar 

  39. Deng, W., Xu, J.J., Zhao, X.Z., Zhao, H.M.: An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.3030792

    Article  Google Scholar 

  40. Deng, W., Xu, J.J., Song, Y.J., Zhao, H.M.: An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. Int. J. Bio-Inspired Comput. 20(5), 1–10 (2020)

    Google Scholar 

  41. Deng, W., Liu, H.L., Xu, J.J., Zhao, H.M., Song, Y.J.: An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans. Instrum Meas. 69(10), 7319–7327 (2020)

    Article  Google Scholar 

  42. Villani, C.: Optimal transport: old and new, vol. 338. Springer, Berlin (2008)

    MATH  Google Scholar 

  43. Giri, B.C., Molla, M.U., Biswas, P.: TOPSIS method for neutrosophic hesitant fuzzy multi-attribute decision making. Informatica 31(1), 35–63 (2020)

    Article  Google Scholar 

  44. Tian, Z.P., Zhang, H.Y., Wang, J.Q., Wang, T.L.: Green supplier selection using improved TOPSIS and Best-Worst method under intuitionistic fuzzy environment. Informatica 29(4), 773–800 (2018)

    Article  Google Scholar 

  45. Wang, X.K., Wang, J.Q., Zhang, H.Y.: Distance-based multicriteria group decision-making approach with probabilistic linguistic term sets. Expert Syst. 36(2), e12352 (2019)

    Article  Google Scholar 

  46. Tian, Z.P., Nie, R.X., Wang, J.Q.: Probabilistic linguistic multi-criteria decision-making based on evidential reasoning and combined ranking methods considering decision-makers’ psychological preferences. J. Oper. Res. Soc. 71(5), 700–717 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editors and the anonymous referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China (No. 71871228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Xk., Wang, Jq. et al. Probability Distribution-Based Processing Model of Probabilistic Linguistic Term Set and Its Application in Automatic Environment Evaluation. Int. J. Fuzzy Syst. 23, 1697–1713 (2021). https://doi.org/10.1007/s40815-021-01060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01060-7

Keywords

Navigation