Skip to main content

Advertisement

Log in

Energy-aware routing considering load balancing for SDN: a minimum graph-based Ant Colony Optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Software-Defined Network (SDN) technology is a network management approach that facilitates a high level of programmability and centralized manageability. By leveraging the control and data plane separation, an energy-aware routing model could be easily implemented in the networks. In the present paper, we propose a two-phase SDN-based routing mechanism that aims at minimizing energy consumption while providing a certain level of QoS for the users’ flows and realizing the link load balancing. To reduce the network energy consumption, a minimum graph-based Ant Colony Optimization (ACO) approach is used in the first phase. It prunes and optimizes the network tree by turning unnecessary switches off and providing an energy-minimized sub-graph that is responsible for the network existing flows. In the second phase, an innovative weighted routing approach is developed that guarantees the QoS requirements of the incoming flows and routes them so that to balance the loads on the links. We validated our proposed approach by conducting extensive simulations on different traffic patterns and scenarios with different thresholds. The results indicate that the proposed routing method considerably minimizes the network energy consumption, especially for congested traffics with mice-type flows. It can provide effective link load balancing while satisfying the users’ QoS requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hammadi, A., Lotfi, M.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2014)

    Article  Google Scholar 

  2. Huin, N., Rifai, M., Giroire, F., Pacheco, D.L., Urvoy-Keller, G., Moulierac, J.: Bringing energy aware routing closer to reality with SDN hybrid networks. IEEE Trans. Green Commun. Netw. 2(4), 1128–1139 (2018)

    Article  Google Scholar 

  3. Tuysuz, M.F., Ankarali, Z.K., Gözüpek, D.: A survey on energy efficiency in software defined networks. Comput. Netw. 113, 188–204 (2017)

    Article  Google Scholar 

  4. Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 177, 448–463 (2018)

    Article  Google Scholar 

  5. Zhang, J., Yu, F.R., Wang, S., Huang, T., Liu, Z., Liu, Y.: Load balancing in data center networks: a survey. IEEE Commun. Surv. Tutor. 20(3), 2324–2352 (2018)

    Article  Google Scholar 

  6. Feng, D., Jiang, C., Lim, G., Cimini, L.J., Feng, G., Ye Li, G.: A Survey of Energy-Efficient Wireless Communications. IEEE Commun. Surv. Tutor. 15(1), 168–178 (2013)

    Google Scholar 

  7. Budzisz, L., Ganji, F., Rizzo, G., Marsan, M.A., Meo, M., Zhang, Y., Koutitas, G., et al.: Dynamic resource provisioning for energy efficiency in wireless access networks: a survey and an outlook. IEEE Commun. Surv. Tutor. 16(4), 2259–2285 (2014)

    Article  Google Scholar 

  8. Rawat, D.B., Reddy, S.R.: Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun. Surv. Tutor. 19(1), 325–346 (2017)

    Article  Google Scholar 

  9. Chiang, M.L., Cheng, H.S., Liu, H.Y., Chiang, C.Y.: SDN-based server clusters with dynamic load balancing and performance improvement. Clust. Comput. 24, 537–558 (2020)

    Article  Google Scholar 

  10. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in SDN-OpenFlow networks. Comput. Netw. 71, 1–30 (2014)

    Article  Google Scholar 

  11. Lamharras, F., Elkamoun, N., Labouidya. O.: Energy Saved Approaches in Software Defined Networks: State of the Art. In: Proceedings of the 2nd International Conference on Networking, Information Systems & Security, pp. 1–5, 2019.

  12. Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J. Supercomput. 62(3), 1263–1283 (2012)

    Article  Google Scholar 

  13. Giroire, F. Huin, N., Moulierac, J., Phan, K.: Energy-aware routing in software-defined networks with table compression (using wildcard rules), 2016.

  14. He, T.Z., Toosi, A.N., Buyya, R.: Performance evaluation of live virtual machine migration in SDN-enabled cloud data centers. J. Parallel Distri. Comput. 131, 55–68 (2019)

    Article  Google Scholar 

  15. Al-Tarazi, M., Chang, J.M.: Network-aware energy saving multi-objective optimization in virtualized data centers. Clust. Comput. 22(2), 635–647 (2019)

    Article  Google Scholar 

  16. Lei, J., Deng, S., Lu, Z., et al.: Energy-saving traffic scheduling in backbone networks with software-defined networks. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03102-5

    Article  Google Scholar 

  17. Rego, A., Sendra, S., Jimenez, J.M., Lloret, J.: Dynamic metric OSPF-based routing protocol for Software Defined Networks. Clust. Comput. 22(3), 705–720 (2019)

    Article  Google Scholar 

  18. Bouamama, S., Blum, C., Fages, J.G.: An algorithm based on ant colony optimization for the minimum connected dominating set problem. Appl. Soft Comput. 80, 672–686 (2019)

    Article  Google Scholar 

  19. Lu, Y., Zhihong, Z., Huaiwen, H., Li, R.: Further complexity results for routing schedule problems of networks. IEEE Netw. Lett. 1(4), 164–167 (2019)

    Article  Google Scholar 

  20. Torkzadeh, S., Soltanizadeh, H., Orouji, A.A.: Multi-constraint QoS routing using a customized lightweight evolutionary strategy. Soft. Comput. 23(2), 693–706 (2019)

    Article  Google Scholar 

  21. Baker, B.F,. Heinanen, J., Carlson, M., et al.: RFC 2475: an architecture for differentiated services[C], 2010.

  22. Özbek, B., Yiğitcan, A., Ulaş, A., Gorkemli, B., Ulusoy, K.: Energy aware routing and traffic management for software defined networks. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 73–77. IEEE, 2016.

  23. Markiewicz, A., Tran, P.N., Timm-Giel, A.: Energy consumption optimization for software defined networks considering dynamic traffic. In: 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), pp. 155–160. IEEE, 2014.

  24. Fernández-Fernández, A., Cervelló-Pastor, C., Ochoa-Aday, L.: A multi-objective routing strategy for QoS and energy awareness in software-defined networks. IEEE Commun. Lett. 21(11), 2416–2419 (2017)

    Article  Google Scholar 

  25. Schwefel, H.P.: Advantages (and disadvantages) of evolutionary computation over other approaches. Evol. Comput. 1, 20–22 (2000)

    Google Scholar 

  26. Younus, M.U., Kim, S.W.: Proposition and real-time implementation of an energy-aware routing protocol for a software defined wireless sensor network. Sensors 19(12), 2739 (2019)

    Article  Google Scholar 

  27. Al-Hubaishi, M., Çeken, C., Al-Shaikhli, A.: A novel energy-aware routing mechanism for SDN-enabled WSAN. Int. J. Commun. Syst. 32(17), e3724 (2019)

    Article  Google Scholar 

  28. Nassiri, M., Mohammadi, R.: A joint energy-and QoS-aware routing mechanism for WMNs using software-defined networking paradigm. J. Supercomput. 76(1), 68–86 (2020)

    Article  Google Scholar 

  29. Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Energy-aware dynamic-link load balancing method for a software-defined network using a multi-objective artificial bee colony algorithm and genetic operators. IET Commun. 14(18), 3284–3293 (2020)

    Article  Google Scholar 

  30. Jiang, D., Zhang, P., Lv, Z., Song, H.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  31. Maaloul, R., Taktak, R., Chaari, L., Cousin, B.: Energy-aware routing in carrier-grade ethernet using sdn approach. IEEE Trans. Green Commun. Netw. 2(3), 844–858 (2018)

    Article  Google Scholar 

  32. Amokrane, A.: Flow-based management for energy efficient campus network. IEEE Trans. Netw. Serv. Manag. 12(4), 565–579 (2015)

    Article  Google Scholar 

  33. Siraj, M.N., Javaid,N., Shafi, Q., Ahmed, Z., Qasim, U., Khan, Z.A.: Energy aware dynamic routing using SDN for a campus network. In: 2016 19th International Conference on Network-Based Information Systems (NBiS), pp. 226–230. IEEE, 2016.

  34. ONF. [Online]. http://opennetworking.org/2021.

  35. Chen, Y., Farley, T., Nong, Y.: QoS requirements of network applications on the Internet. Inf. Knowl. Syst. Manag. 4(1), 55–76 (2004)

    Google Scholar 

  36. Montazerolghaem, A.: Software-defined load-balanced data center: design, implementation and performance analysis. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03134-x

    Article  Google Scholar 

  37. Fooldlight. [Online]. http://floodlight.atlassian.net/2021.

  38. Mininet. [Online]. http://mininet.org/2021.

Download references

Acknowledgements

The authors would like to acknowledge the financial support of science, research, and technology for this project under Grant No. 169902000031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Soltanizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkzadeh, S., Soltanizadeh, H. & Orouji, A.A. Energy-aware routing considering load balancing for SDN: a minimum graph-based Ant Colony Optimization. Cluster Comput 24, 2293–2312 (2021). https://doi.org/10.1007/s10586-021-03263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03263-x

Keywords

Navigation