Skip to main content
Log in

A New Equation for a Scalar Field from Thermodynamics First Law and Its Cosmological Implications

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We use the canonical formalism of classical mechanics together with the first law of thermodynamics to unveil a differential equation for a minimally coupled canonical scalar field which should be solved simultaneously with the Klein–Gordon equation. This equation was obtained by realizing that the thermodynamic work is equal to the work done by the generalized force to increase the scalar field by an amount \(d\phi\). Then, using the first law of thermodynamics, we obtain the equation \({\dot{\phi}}(dV/d\phi)={-}3H[{\dot{\phi}}^{2}/2-V(\phi)]\) which, together with the Klein–Gordon equation, rules the dynamics of this minimally coupled scalar field. We demonstrate precisely that the potential \(V\), that satisfies both equations simultaneously, evolves with the scale factor as \(V\propto a^{-3\sqrt{2}}\) and dominated the early stages of the Universe expansion history. We carry out an observational analysis together with some of the most updated data currently available, and we prove that the energy density of this field is comparable to the radiation density energy at redshifts of order \(10^{8}\), which is nearly 100 times smaller than the radiation energy density today. Although negligible today, we have shown that this scalar field can alleviate enormously the so-called \(H_{0}\) tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The convention used here is that Greek indices runs from 0 to 3 and Latin indices run from 1 to 3.

  2. The use of these cosmological probes in a joint analysis is useful to brake the degenerescence between the model parameters.

REFERENCES

  1. A. G. Reiss et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. J. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

    Article  Google Scholar 

  4. D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  5. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  6. T. Padamanbhan, Class. Quantum Grav. 19 L167 (2002);

    Article  ADS  Google Scholar 

  7. T. Padamanbhan, Class. Quantum Grav. 19 L167 (2002); T. Padamanbhan, Phys. Rep. 380, 235 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Bousso, Gen. Rel. Grav. 40, 607 (2008).

    Article  ADS  Google Scholar 

  9. V. Emelyanov and F. R. Klinkhamer, Phys. Rev. D 85, 103508 (2012).

    Article  ADS  Google Scholar 

  10. D. J. Shaw and J. D. Barrow, Phys. Rev. D 83, 043518 (2011);

    Article  ADS  Google Scholar 

  11. D. J. Shaw and J. D. Barrow, Phys. Rev. D 83, 043518 (2011); J. D. Barrow and D. J. Shaw, Phys. Rev. Lett. 106, 101302 (2011).

    Article  ADS  Google Scholar 

  12. S. Aslanbeigi et al., Phys. Rev. D 84, 103522 (2011).

    Article  ADS  Google Scholar 

  13. P. D. Mannheim, Gen. Rel. Grav. 43, 703 (2011).

    Article  ADS  Google Scholar 

  14. A. Linde and V. Vanchurin, “Towards a non-anthropic solution to the cosmological constant problem,” arXiv:1011.0119.

  15. H. Stefancic, Phys. Lett. B 670, 246 (2009).

    Article  ADS  Google Scholar 

  16. J. Garriga and A. Vilenkin, Phys. Rev. D 64, 023517 (2001).

    Article  ADS  Google Scholar 

  17. S. M. Carroll and G. N. Remmen, Phys. Rev. D 95, 123504 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Viaggiu, Class. Quantum Grav. 35, 215011 (2018).

    Article  ADS  Google Scholar 

  19. C. Wetterich, Nucl. Phys. B 302, 668 (1988);

    Article  ADS  Google Scholar 

  20. B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988);

    Article  ADS  Google Scholar 

  21. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998);

    Article  ADS  Google Scholar 

  22. C. Wetterich, Nucl. Phys. B 302, 668 (1988); B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); R. R. Caldwell, Braz. J. Phys. 30, 215 (2000).

    Article  ADS  Google Scholar 

  23. E. M. Barboza Jr., R. C. Nunes, E. M. C. Abreu, and J. A. Neto, Phys. Rev. D 92, 083526 (2015).

    Article  ADS  Google Scholar 

  24. R. C. Duarte, E. M. Barboza Jr., E. M. C. Abreu, and J. A. Neto, Eur. Phys. J. C 79, 356 (2019).

    Article  ADS  Google Scholar 

  25. J. H. Lane, Am. J. Sci. Arts 50, 57 (1870).

    Article  ADS  Google Scholar 

  26. A. M. Oztas, E. Dil and M. L. Smith, “Adiabatic expansion Universe with varying cosmological constant: Models tested with observational data,” arXiv: 1801.05033.

  27. I. Prigogine, J. Geheniace, E. Gunzig, and P. Nardone, Proc. Nat. Acad. Sci. 85, 7428 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Iqbal and A. Jawad, Int. J. Geom. Meth. Mod. Phys. 10, 1950081 (2019);

    Article  Google Scholar 

  29. G. Cognola, Phys. Rev. D 57, 6292 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Iqbal and A. Jawad, Int. J. Geom. Meth. Mod. Phys. 10, 1950081 (2019); G. Cognola, Phys. Rev. D 57, 6292 (1998); M. D. Pollock, Nucl. Phys. B 208, 182 (1982).

    Article  ADS  Google Scholar 

  31. R. I. Ivanov and E. M. Prodanov, Eur. Phys. J. C 79, 118 (2019) and references therein.

    Article  ADS  Google Scholar 

  32. M. Betoule et al., Astron. Astrophys. 568, A22 (2014).

    Article  Google Scholar 

  33. D. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).

    Article  ADS  Google Scholar 

  34. F. Beutler et al., MNRAS 416, 3017 (2011).

    Article  ADS  Google Scholar 

  35. L. Anderson et al., MNRAS 427, 3435 (2012).

    Article  ADS  Google Scholar 

  36. W. J. Percival et al., MNRAS 401, 2140 (2010).

    Article  ADS  Google Scholar 

  37. C. Blake et al., MNRAS 418, 1707 (2011).

    Article  ADS  Google Scholar 

  38. W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).

    Article  ADS  Google Scholar 

  39. L. Chen, Q.-G. Huang, and K. Wang, “Distance Priors from Planck Final Release,” arXiv: 1808.05724.

  40. N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209.

  41. R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002).

    Article  ADS  Google Scholar 

  42. J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D 71, 123001 (2005).

    Article  ADS  Google Scholar 

  43. D. Stern, R. Jimenez, L. Verde, S. A. Stanford, and M. Kamionkowski, Astrophys. J. Suppl. 188, 280 (2010).

    Article  Google Scholar 

  44. M. Moresco et al., JCAP 08, 006 (2012).

  45. C. Zhang, H. Zhang, S. Yuan, S. Liu, T.-J. Zhang, and Y.-C. Sun, Res. Astron. Astrophys. 14, 1221 (2014)

    Article  ADS  Google Scholar 

  46. M. Moresco, MNRAS 450, L16 (2015).

    Article  ADS  Google Scholar 

  47. M. Moresco et al., JCAP 05, 014 (2016).

  48. A. L. Ratsimbazafy et al., MNRAS 467, 3239 (2017).

    Article  ADS  Google Scholar 

  49. A. Riess et al., Astrophys. J. 861, 126 (2018).

    Article  ADS  Google Scholar 

  50. Q.-G. Huang and K. Wang, EJPC 76, 506 (2016).

    Article  Google Scholar 

  51. R.-Y. Guo, J.-F. Zhang, and X. Zhang, “Can the \(H_{o}\) tension be resolved in extensions to \(\Lambda\)CDM cosmology?,” arXiv: 1809.02340.

  52. N. Sugiura, “Further analysis of the data by Akaikes information criterion and the finite corrections,” Communications in Statistics—Theory and Methods A 7, 13 (1978).

  53. G. Schwarz, Ann. Statist. 6, 461 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  54. D. J. E. Marsh, Phys. Rep. 643, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  55. P. S. Sikivie, Lect. Notes Phys. 741, 19 (2008).

  56. G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008).

  57. A. D. Linde, Phys. Lett. B 259, 38 (1991).

    Article  ADS  Google Scholar 

  58. S. D. Odintsov and V. K. Oikonomou, Euro Phys. Lett. 129, 40001 (2020).

    Article  ADS  Google Scholar 

  59. S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 101, 044009 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  60. S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99, 104070 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  61. S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99, 064049 (2019).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

E.M.C.A. is the corresponding author. This research was financially supported in part by the Coordenaзão de Aperfeiзoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. E.M.C.A. and J.A.N. thank CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, for partial financial support, Grants number 406894/2018-3 (E.M.C.A.) and 303140/2017-8 (J.A.N.). CAPES and CNPq are Brazilian scientific support federal agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Everton M. C. Abreu, Edésio M. Barboza Jr. or Jorge Ananias Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, E.M., Barboza Jr., E.M. & Neto, J.A. A New Equation for a Scalar Field from Thermodynamics First Law and Its Cosmological Implications. Gravit. Cosmol. 27, 1–10 (2021). https://doi.org/10.1134/S0202289321010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289321010023

Navigation