Skip to main content
Log in

Revisiting the Colletotrichum species causing anthracnose of almond in Australia

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Almond production is a significant horticulture crop for Australia. Serious yield losses can be caused by the fungal disease anthracnose, caused by Colletotrichum species that infect the fruit and leaves. Genomic sequence data for gene extraction, along with multigene phylogenetic analyses and whole genome average nucleotide identity (ANI) analysis were used to determine the phylogeny of Colletotrichum isolates collected from almonds across Australia. Multigene phylogenetic analyses of six gene regions (ITS, tub2, gapdh, chs-1, act and his3) identified C. acutatum sensu stricto, C. fioriniae and C. simmondsii as pathogens of almond. Similar topology was observed using ANI, which provided increased resolution within C. acutatum, with isolates separating largely according to geographic origin. The ANI analysis also supported three separate species with isolates within each species sharing >98.7% ANI (species cut off = 95%), while between species there was <90.5% ANI. Pathogenicity assays on detached almond leaves revealed differences in aggressiveness among representative isolates from the three species, with higher susceptibility on leaves of variety Price than Nonpareil. This is the first report of C. fioriniae and C. simmondsii causing anthracnose of almond globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achari SR, Kaur J, Dinh SQ, Mann R, Sawbridge T, Summerell BA, Edwards J (2020) Phylogenetic relationship between the Australian Fusarium oxysporum isolates and resolving the species complex using the multispecies coalescent model. BMC Genomics 21:248–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87:979–987

    Article  CAS  PubMed  Google Scholar 

  • Almond Board of Australia (2018) Almond Insights 2017–18, www.australianalmonds.com.au

  • Alshahni MM, Yamada T, Yo A, Murayama SY, Kuroda M, Hoshino Y, Ishikawa J, Watanabe S, Makimura K (2018) Insight into the draft whole-genome sequence of the dermatophyte Arthroderma vanbreuseghemii. Sci Rep 8:15127

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess LW, Summerell BA, Bullock S, Gott KP, Backhouse D (1994) Laboratory manual for Fusarium research 3rd ed: University of Sydney

  • Cai L, Hyde K, Taylor P, Weir B, Waller J, Abang M, Zhang J, Yang Y, Phoulivong S, Liu Z (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum - current status and future directions. Stud Mycol 73:181–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, Brover S, Schoch CL, Kimchi A, DiCuccio M (2018) Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 68:2386–2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Colmagro SF (2005) Anthracnose on almond: epidemiology and characterisation of Colletotrichum acutatum. Ph.D. thesis, The University of Adelaide, South Australia, Australia

  • Crous PW, Verkleij GJM, Groenewald JZ, Samson RA (eds) (2009) Fungal biodiversity. CBS Laboratory Manual Series 1. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands

  • Damm U, Cannon PF, Woudenberg JH, Crous PW (2012) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW (2019) The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Stud Mycol 92:1–46

    Article  CAS  PubMed  Google Scholar 

  • De Silva DD, Ades PK, Crous PW, Taylor PWJ (2017a) Colletotrichum species associated with chili anthracnose in Australia. Plant Pathol 66:254–267

    Article  Google Scholar 

  • De Silva DD, Crous PW, Ades PK, Hyde KD, Taylor PWJ (2017b) Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol Rev 31:155–168

    Article  Google Scholar 

  • De Silva DD, Groenewald JZ, Crous PW, Ades PK, Nasruddin A, Mongkolporn O, Taylor PWJ (2019) Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum in Asia. IMA Fungus 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean R, van Kan JAL, Pretorius ZA, Hammond-Kosack KE, di Pietro A, Spanu PD, Rudd JJ et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Path 13:414–430

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57:81–91

    Article  CAS  Google Scholar 

  • Guerber JC, Liu B, Correll JC, Johnston PR (2003) Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872–895

    Article  CAS  PubMed  Google Scholar 

  • Hall BH, Jones MK, Wicks TJ (1998) First report of anthracnose of almond in South Australia. Australas Plant Path 27:127–127

    Article  Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP (2007) CLUSTALW and CLUSTALX version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • López-Moral A, Agustí-Brisach C, Lovera M, Arquero O, Trapero A (2020) Almond anthracnose: current knowledge and future perspectives. Plants (Basel) 9:945

  • López-Moral A, Raya-Ortega MC, Agustí-Brisach C, Roca LF, Lovera M, Luque F, Arquero O, Trapero A (2017) Morphological, pathogenic, and molecular characterization of Colletotrichum acutatum isolates causing almond anthracnose in Spain. Plant Dis 101:2034–2045

    Article  PubMed  Google Scholar 

  • Marcelino JAP, Giordano R, Gouli S, Gouli V, Parker BL, Skinner M, TeBeest D, Cesnik R (2008) Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 100:353–374

    Article  CAS  PubMed  Google Scholar 

  • Marin-Felix Y, Groenewald J, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U et al (2017) Genera of phytopathogenic fungi: GOPHY 1. Stud Mycol 86:99–216

  • McKay SF, Freeman S, Minz D, Maymon M, Sedgley M, Collins GC et al (2009) Morphological, genetic, and pathogenic characterization of Colletotrichum acutatum, the cause of anthracnose of almond in Australia. Phytopathology 99:985–995

    Article  CAS  PubMed  Google Scholar 

  • McMichael P (2000) The control and management of anthracnose of almonds. (Scholefield Robinson Horticultural Services; Gordon, NSW Horticultural Research & Development Corporation) HRDC Project NT 98004

  • Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucl Acids Res 22:6115–6116

    Article  Google Scholar 

  • Nguyen HDT, Sultana T, Kesanakurti P, Hambleton S (2019) Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat. IMA Fungus 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Nylander JAA (2004) MrModeltest v. 2. Program distributed by the author, Uppsala: Evolutionary Biology Centre, Uppsala University

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Phoulivong S, McKenzie E, Hyde K (2012) Cross infection of Colletotrichum species; a case study with tropical fruits. Curr Res Environ Appl Mycol 2:99–111

  • Pritchard L, Cock P, Esen Ö (2019) Pyani v0.2.8: average nucleotide identity (ANI) and related measures for whole genome comparisons. Software. https://doi.org/10.5281/zenodo.2584238

  • Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A, Höhna S (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabi E, Katan T (1983) Occurrence and control of anthracnose of almond in Israel. Plant Dis 67:1364–1366

    Article  Google Scholar 

  • Shivas RG, Tan YP (2009) A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov and C. simmondsii sp nov. Fungal Divers 39:111–122

    Google Scholar 

  • Shivas RG, Tan YP, Edwards J, Dinh Q, Maxwell A, Andjic V et al. (2016) Colletotrichum species in Australia. Australas Plant Path 45:447–464

  • Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wibberg D, Rupp O, Blom J, Jelonek L, Kröber M, Verwaaijen B (2015) Development of a Rhizoctonia solani AG1-IB specific gene model enables comparative genome analyses between phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 isolates. PLoS One 10(12):e0144769

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaveri A, Mann RC, Kaur JK, Henry FJ, Wallwork H, Linde CC, Edwards J (2020) Phylogenetic placement of Spermospora avenae, causal agent of red leather leaf of oats. Australas Plant Path 49:551–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support received from the Innovation Seed Fund for Horticulture Development between Agriculture Victoria and The University of Melbourne. We wish to thank Roger Shivas, Simone Kreidl, Mark Sosnowski and Barbara Hall for their contribution in sample collections and provision of cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. de Silva.

Supplementary Information

ESM 1

(PNG 43.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Silva, D.D., Mann, R.C., Kaur, J. et al. Revisiting the Colletotrichum species causing anthracnose of almond in Australia. Australasian Plant Pathol. 50, 267–279 (2021). https://doi.org/10.1007/s13313-020-00765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-020-00765-x

Keywords

Navigation