Skip to main content
Log in

The semiparametric accelerated trend-renewal process for recurrent event data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Recurrent event data arise in many biomedical longitudinal studies when health-related events can occur repeatedly for each subject during the follow-up time. In this article, we examine the gap times between recurrent events. We propose a new semiparametric accelerated gap time model based on the trend-renewal process which contains trend and renewal components that allow for the intensity function to vary between successive events. We use the Buckley–James imputation approach to deal with censored transformed gap times. The proposed estimators are shown to be consistent and asymptotically normal. Model diagnostic plots of residuals and a method for predicting number of recurrent events given specified covariates and follow-up time are also presented. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to two real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4):1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Bain L (2017) Statistical analysis of reliability and life-testing models: theory and methods, 2nd edn. Routledge, New York

    Book  Google Scholar 

  • Baltazar-Aban I, Peña EA (1995) Properties of hazard-based residuals and implications in model diagnostics. J Am Stat Assoc 90(429):185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley J, James I (1979) Linear regression with censored data. Biometrika 66(3):429–436

    Article  MATH  Google Scholar 

  • Cai T, Wei LJ, Wilcox M (2000) Semiparametric regression analysis for clustered failure time data. Biometrika 87(4):867–878

    Article  MathSciNet  MATH  Google Scholar 

  • Chang SH (2004) Estimating marginal effects in accelerated failure time models for serial sojourn times among repeated events. Lifetime Data Anal 10(2):175–190

    Article  MathSciNet  MATH  Google Scholar 

  • Chiou SH, Kang S, Kim J, Yan J (2014) Marginal semiparametric multivariate accelerated failure time model with generalized estimating equations. Lifetime Data Anal 20(4):599–618

    Article  MathSciNet  MATH  Google Scholar 

  • Clement DY, Strawderman RL (2009) Conditional GEE for recurrent event gap times. Biostatistics 10(3):451–467

    Article  MATH  Google Scholar 

  • Cook RJ, Lawless J (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  • Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee KA (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104(485):60–75

    Article  MathSciNet  MATH  Google Scholar 

  • Darlington G, Dixon S (2013) Event-weighted proportional hazards modelling for recurrent gap time data. Stat Med 32(1):124–130

    Article  MathSciNet  Google Scholar 

  • Du P (2009) Nonparametric modeling of the gap time in recurrent event data. Lifetime Data Anal 15(2):256–277

    Article  MathSciNet  MATH  Google Scholar 

  • Gail M, Santner T, Brown C (1980) An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics 36(2):255–266

    Article  MathSciNet  MATH  Google Scholar 

  • Gámiz ML, Lindqvist BH (2016) Nonparametric estimation in trend-renewal processes. Reliab Eng Syst Saf 145:38–46

    Article  Google Scholar 

  • Gaudoin O, Yang B, Xie M (2003) A simple goodness-of-fit test for the power-law process, based on the Duane plot. IEEE Trans Reliab 52(1):69–74

    Article  Google Scholar 

  • González JR, Fernandez E, Moreno V, Ribes J, Peris M, Navarro M, Cambray M, Borràs JM (2005) Sex differences in hospital readmission among colorectal cancer patients. J Epidemiol Commun Health 59(6):506–511

    Article  Google Scholar 

  • Hamilton GM, Meeuwisse WH, Emery CA, Shrier I (2011) Subsequent injury definition, classification, and consequence. Clin J Sport Med 21(6):508–514

    Article  Google Scholar 

  • Heggland K, Lindqvist BH (2007) A non-parametric monotone maximum likelihood estimator of time trend for repairable system data. Reliab Eng Syst Saf 92(5):575–584

    Article  Google Scholar 

  • Huang Y, Chen YQ (2003) Marginal regression of gaps between recurrent events. Lifetime Data Anal 9(3):293–303

    Article  MathSciNet  MATH  Google Scholar 

  • Jokiel-Rokita A, Magiera R (2012) Estimation of parameters for trend-renewal processes. Stat Comput 22(2):625–637

    Article  MathSciNet  MATH  Google Scholar 

  • Kang F, Sun L, Zhao X (2015) A class of transformed hazards models for recurrent gap times. Comput Stat Data Anal 83:151–167

    Article  MathSciNet  MATH  Google Scholar 

  • Kvaløy JT, Lindqvist BH (1998) TTT-based tests for trend in repairable systems data. Reliab Eng Syst Saf 60(1):13–28

    Article  Google Scholar 

  • Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37(2):158–168

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless JF, Çiğşar C, Cook RJ (2012) Testing for monotone trend in recurrent event processes. Technometrics 54(2):147–158

    Article  MathSciNet  Google Scholar 

  • Lawless JF (1987) Regression methods for Poisson process data. J Am Stat Assoc 82(399):808–815

    Article  MathSciNet  MATH  Google Scholar 

  • Lin D, Wei L, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc Ser B (Stat Methodol) 62(4):711–730

    Article  MathSciNet  MATH  Google Scholar 

  • Lindqvist B, Elvebakk G, Heggland K (2003) The trend-renewal process for statistical analysis of repairable systems. Technometrics 45(1):31–44

    Article  MathSciNet  Google Scholar 

  • Lindqvist BH (2006) On the statistical modeling and analysis of repairable systems. Stat Sci 21:532–551

    Article  MathSciNet  MATH  Google Scholar 

  • Louzada F, Macera MA, Cancho VG (2017) A gap time model based on a multiplicative marginal rate function that accounts for zero-recurrence units. Stat Methods Med Res 26(5):2000–2010

    Article  MathSciNet  Google Scholar 

  • Luo X, Huang CY (2011) Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method. Stat Med 30(4):301–311

    Article  MathSciNet  Google Scholar 

  • Miller RG (1976) Least squares regression with censored data. Biometrika 63(3):449–464

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson W (1988) Graphical analysis of system repair data. J Qual Technol 20(1):24–35

    Article  Google Scholar 

  • Pan W, Connett JE (2001) A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Anal 7(2):111–123

    Article  MathSciNet  MATH  Google Scholar 

  • Peña EA, Strawderman RL, Hollander M (2001) Nonparametric estimation with recurrent event data. J Am Stat Assoc 96(456):1299–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Pietzner D, Wienke A (2013) The trend-renewal process: a useful model for medical recurrence data. Stat Med 32(1):142–152

    Article  MathSciNet  Google Scholar 

  • Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68(2):373–379

    Article  MathSciNet  MATH  Google Scholar 

  • Rondeau V, Mazroui Y, Gonzalez JR (2012) frailtypack: an r package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J Stat Softw 47(4):1–28

    Article  Google Scholar 

  • Schaubel DE, Cai J (2004a) Non-parametric estimation of gap time survival functions for ordered multivariate failure time data. Stat Med 23(12):1885–1900

    Article  Google Scholar 

  • Schaubel DE, Cai J (2004b) Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data. Biometrika 91(2):291–303

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman RL (2005) The accelerated gap times model. Biometrika 92(3):647–666

    Article  MathSciNet  MATH  Google Scholar 

  • Strawderman RL (2006) A regression model for dependent gap times. Int J Biostat 2(1):1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Su CL, Lin FC (2020) Analysis of cyclic recurrent event data with multiple event types. Jpn J Stat Data Sci 1–21

  • Su CL, Steele R, Shrier I (2020a) Doubly robust estimation and causal inference for recurrent event data. Stat Med 39(17):2324–2338

    Article  MathSciNet  Google Scholar 

  • Su CL, Platt RW, Plante JF (2020b) Causal inference for recurrent event data using pseudo-observations. Biostatistics

  • Sun L, Park DH, Sun J (2006) The additive hazards model for recurrent gap times. Statistica Sinica 16(3):919–932

    MathSciNet  MATH  Google Scholar 

  • Team RC, Worldwide C (2002) The r stats package. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Varadhan R, Gilbert P (2009) BB: an R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. J Stat Softw 32(4):1–26

    Article  Google Scholar 

  • Wang MC, Chang SH (1999) Nonparametric estimation of a recurrent survival function. J Am Stat Assoc 94(445):146–153

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63(1):78–87

    Article  MathSciNet  MATH  Google Scholar 

  • Yin G, Cai J (2005) Quantile regression models with multivariate failure time data. Biometrics 61(1):151–161

    Article  MathSciNet  MATH  Google Scholar 

  • Ying Z, Wei LJ (1994) The Kaplan–Meier estimate for dependent failure time observations. J Multivar Anal 50(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin D (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93(3):627–640

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin D (2008) Efficient resampling methods for nonsmooth estimating functions. Biostatistics 9(2):355–363

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao X, Zhou X (2012) Modeling gap times between recurrent events by marginal rate function. Comput Stat Data Anal 56(2):370–383

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors, the associate editor, and two anonymous referees whose comments led to a substantial improvement of this paper. Chien-Lin Su gratefully acknowledges the financial support as a STATLAB-CANSSI-CRM postdoctoral fellow (2016-2017) by the Canadian Statistical Sciences Institute (CANSSI) and Centre de recherches mathématiques (CRM) in Montreal. Russell Steele and Ian Shrier acknowledge the joint financial support of the Natural Science and Engineering Research Council (NSERC) and the Canadian Institutes for Health Research (CIHR) via a Collaborative Health Research Project Grant (Grant Number: CHRPJ/478521-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Lin Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CL., Steele, R.J. & Shrier, I. The semiparametric accelerated trend-renewal process for recurrent event data. Lifetime Data Anal 27, 357–387 (2021). https://doi.org/10.1007/s10985-021-09519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-021-09519-3

Keywords

Navigation