Skip to main content
Log in

The Coiling of Split Dandelion Scape Induced by Cell Hygroscopicity

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

It is of great significance to study the water absorption and expansion of cells, which are essential for the growth and life regulation of plants, not only for understanding the complex life phenomena of plants, but also for the manufacture of biomimetic materials. The main purpose of this study is to shed light on the mechanism of a novel coiling phenomenon of the split dandelion scape soaked in water and the high concentration mannitol solution. We discovered that the difference between water absorption/dehydration capacities of inner cells and lateral cells of the split dandelion scape generates asymmetric expansion/contraction between inner and lateral layers, resulting two opposite coiled patterns. Analogous to the deformable hypothesis of the thermal expansion model, the water absorption-induced cell expansion model was proposed to explain the coiling process of the split dandelion scape. Both the simulation and experimental results revealed that the coiling of dandelion scape is strongly depended on the response of cells to the stimulation of the solution environment. Showing considerable potential load bearing capacity of plants, the coiling phenomenon can be an inspiration to the designs of soft robots and bionic sensors for humidity control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burgert I , Fratzl P . Actuation systems in plants as prototypes for bioinspired devices[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009. https://doi.org/10.1098/rsta.2009.0003.

  2. Forterre Y, Skotheim JM, Dumais J, Mahadevan L. How the Venus flytrap snaps. Nature. 2005;433(7024):421–5. https://doi.org/10.1038/nature03185.

    Article  Google Scholar 

  3. Braam J. In touch: Plant responses to mechanical stimuli. New Phytol. 2005;165(2):373–89. https://doi.org/10.1111/j.1469-8137.2004.01263.x.

    Article  Google Scholar 

  4. Volkov AG, Adesina T, Markin VS, Jovanov E. Kinetics and Mechanism of Dionaea muscipula. Trap Closing Plant Physiol. 2008;146(2):694–702. https://doi.org/10.1104/pp.107.108241.

    Article  Google Scholar 

  5. Ismarrubie ZN, Goh HL, Masuri S, Yussof H. Bio-mechanism response of mimosa pudica against external stimulation. Adv Mater Res. 2015;1125:588–92.

    Article  Google Scholar 

  6. Kagawa H, Saito E. A model on the main pulvinus movement of mimosa pudica. JSME Int J Series C. 2000;43(4):923–8. https://doi.org/10.1299/jsmec.43.923.

    Article  Google Scholar 

  7. Reyssat E, Mahadevan L. Hygromorphs: From pine cones to biomimetic bilayers. J Royal Soc Interface. 2009;6(39):951–7. https://doi.org/10.1098/rsif.2009.0184.

    Article  Google Scholar 

  8. Dawson C, Vincent JFV, Rocca A-M. How pine cones open. Nature. 1997;390(6661):668.

    Article  Google Scholar 

  9. Coutand C, Fournier M, Moulia B. The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiol. 2007;144(2):1166–80. https://doi.org/10.1104/pp.106.088153.

    Article  Google Scholar 

  10. Hill BS, Findlay GP. The power of movement in plants: The role of osmotic machines. Quart Rev Biophys. 1981;14(2):173–222. https://doi.org/10.1017/S0033583500002249.

    Article  Google Scholar 

  11. Toriyama H, Jaffe MJ. Migration of calcium and its role in the regulation of seismonasty in the motor cell of mimosa pudica L. Plant Physiol. 1972;49(1):72–81. https://doi.org/10.1104/pp.49.1.72.

    Article  Google Scholar 

  12. Uehlein N, Kaldenhoff R. Aquaporins and plant leaf movements. Ann Botany. 2007;101(1):1–4. https://doi.org/10.1093/aob/mcm278.

    Article  Google Scholar 

  13. Elbaum R, Zaltzman L, Burgert I, Fratzl P. The role of wheat awns in the seed dispersal unit. Science. 2007;316(5826):884–6. https://doi.org/10.1126/science.1140097.

    Article  Google Scholar 

  14. Abraham Y, Tamburu C, Klein E, Dunlop JWC, Fratzl P, Raviv U, et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J Royal Soc Interface. 2012;9(69):640–7. https://doi.org/10.1098/rsif.2011.0395.

    Article  Google Scholar 

  15. Proseus TE, Zhu GL, Boyer JS. Turgor, temperature and the growth of plant cells: using Chara corallina as a model system. J Exp Botany. 2000;51(350):1481–94. https://doi.org/10.1093/jexbot/51.350.1481.

    Article  Google Scholar 

  16. Lee S, Zargar O, Reiser C, Li Q, Muliana A, Finlayson SA, et al. Time-dependent mechanical behavior of sweet sorghum stems. J Mech Behav Biomed Mater. 2020;106:103731. https://doi.org/10.1016/j.jmbbm.2020.103731.

    Article  Google Scholar 

  17. Ha NS, Lu G, Shu D, Yu TX. Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). J Mech Behav Biomed Mater. 2020;104:103603. https://doi.org/10.1016/j.jmbbm.2019.103603.

    Article  Google Scholar 

  18. Pieranski P, Baranska J, Skjeltorp A. Tendril perversion-a physical implication of the topological conservation law. Europ J Phys. 2004;25(5):613–21. https://doi.org/10.1088/0143-0807/25/5/004.

    Article  Google Scholar 

  19. Wang J-S, Wang G, Feng X-Q, Kitamura T, Kang Y-L, Yu S-W, et al. Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci Rep. 2013;3(1):3102. https://doi.org/10.1038/srep03102.

    Article  Google Scholar 

  20. Gerbode SJ, Puzey JR, McCormick AG, Mahadevan L. How the Cucumber Tendril Coils and Overwinds. Science. 2012;337(6098):1087–91. https://doi.org/10.1126/science.1223304.

    Article  Google Scholar 

  21. Wu W, Geng L, Niu Y, Qi D, Cui X, Fang D. Compression twist deformation of novel tetrachiral architected cylindrical tube inspired by towel gourd tendrils. Extreme Mech Lett. 2018;20:104–11. https://doi.org/10.1016/j.eml.2018.02.001.

    Article  Google Scholar 

  22. Fratzl P, Elbaum R, Burgert I. Cellulose fibrils direct plant organ movements. Faraday Disc. 2008;139:275–82. https://doi.org/10.1039/B716663J.

    Article  Google Scholar 

  23. Skotheim JM, Mahadevan L. Physical limits and design principles for plant and fungal movements. Science. 2005;308(5726):1308–10. https://doi.org/10.1126/science.1107976.

    Article  Google Scholar 

  24. Dumais J, Forterre Y. Vegetable Dynamicks: The role of water in plant movements. Annual Rev Fluid Mech. 2012;44(1):453–78. https://doi.org/10.1146/annurev-fluid-120710-101200.

    Article  MathSciNet  MATH  Google Scholar 

  25. Oey ML, Vanstreels E, De Baerdemaeker J, Tijskens E, Ramon H, Hertog MLATM et al. Effect of turgor on micromechanical and structural properties of apple tissue: A quantitative analysis. Postharvest Biology and Technology. 2007;44(3):240-7. https://doi.org/10.1016/j.postharvbio.2006.12.015

  26. Wang L-L, Chen A-P, Zhong N-Q, Liu N, Wu X-M, Wang F, et al. The Thellungiella salsuginea Tonoplast Aquaporin TsTIP1;2 Functions in Protection Against Multiple Abiotic Stresses. Plant Cell Physiol. 2013;55(1):148–61. https://doi.org/10.1093/pcp/pct166.

    Article  Google Scholar 

  27. Kuang Y, Chen C, Cheng J, Pastel G, Li T, Song J, et al. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech Lett. 2019;29:100463. https://doi.org/10.1016/j.eml.2019.100463.

    Article  Google Scholar 

  28. Liu D, Tarakanova A, Hsu CC, Yu M, Zheng S, Yu L, et al. Spider dragline silk as torsional actuator driven by humidity. Science Advances. 2019;5(3):eaau9183. https://doi.org/10.1126/sciadv.aau9183.

  29. Chen Z, Liang X, Wu T, Yin T, Xiang Y, Qu S. Pneumatically actuated soft robotic arm for adaptable grasping. Acta Mechanica Solida Sinica. 2018;31(5):608–22. https://doi.org/10.1007/s10338-018-0052-4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support of the National Natural Science Foundation of China (11502155), Natural Science Foundation of Shanxi Province (201901D211112) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0328). We thank Prof. Yuren Wang and Mrs. Tingting Zhao for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Qiao, T., Zhou, K. et al. The Coiling of Split Dandelion Scape Induced by Cell Hygroscopicity. Acta Mech. Solida Sin. 34, 393–403 (2021). https://doi.org/10.1007/s10338-021-00227-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00227-x

Keywords

Navigation