Skip to main content
Log in

Phase transitions in D-dimensional Gauss–Bonnet–Born–Infeld AdS black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the phase transition in black holes when Gauss–Bonnet corrections to the spacetime curvature and Born–Infeld extension in stress–energy tensor of electromagnetic field are considered in a negative cosmological constant background. It is evident that the black hole undergoes a phase transition as the specific heat capacity at constant potential shows discontinuities. Further, the computation of the free energy of the black hole, the Ehrenfest scheme and the Ruppeiner state space geometry analysis are carried out to establish the second order nature of this phase transition. The effect of non-linearity arising from Born–Infeld electrodynamics is also evident from our analysis. Our investigations are done in general D-spacetime dimensions with \(D>4 \), and specific computations have been carried out in \(D= 5,6,7\) spacetime dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Given a function g(xy) satisfying \(g(\alpha ^m x,\alpha ^n y)=\alpha ^rg(x,y)\), we have \(rg(x,y)=mx\left( \dfrac{\partial g}{\partial x}\right) +ny\left( \dfrac{\partial g}{\partial y}\right) \).

References

  1. Hawking, S., Page, D.N.: Thermodynamics of Black Holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bekenstein, J.D.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  3. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  4. Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  5. Fradkin, E.S., Tseytlin, A.A.: Effective action approach to superstring theory. Phys. Lett. 160B, 69 (1985)

    Article  ADS  Google Scholar 

  6. Leigh, R.G.: Dirac–Born–Infeld action from Dirichlet sigma model. Mod. Phys. Lett. A 4, 2767 (1989)

    Article  ADS  Google Scholar 

  7. Wiltshire, D.L.: Black holes in string-generated gravity models. Phys. Rev. D 38, 2445 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dey, T.K.: Born–Infeld black holes in the presence of a cosmological constant. Phys. Lett. B 595, 484 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cai, R.G., Pang, D.W., Wang, A.: Born–Infeld black holes in (A)dS spaces. Phys. Rev. D 70, 124034 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Neupane, I.P.: Thermodynamic and gravitational instability on hyperbolic spaces. Phys. Rev. D 69, 084011 (2004)

    Article  ADS  Google Scholar 

  11. Cai, R.G.: Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cho, Y.M., Neupane, I.P.: Anti-de sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 66, 024044 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cvetic, M., Nojiri, S., Odintsov, S.D.: Black Hole Thermodynamics and Negative Entropy in deSitter and Anti-deSitter Einstein–Gauss–Bonnet gravity. Nucl. Phys. B 628, 295 (2002)

    Article  ADS  Google Scholar 

  14. Nojiri, S., Odintsov, S.D.: Anti-de sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mišković, O., Olea, R.: Thermodynamics of black holes in Einstein–Gauss–Bonnet AdS gravity coupled to Nonlinear Electrodynamics. J. Phys. Conf. Ser. 343, 012077 (2012)

    Article  Google Scholar 

  16. Zou, D., Yang, Z., Yue, R., Li, P.: Thermodynamics of Gauss–Bonnet–Born–Infeld Black holes in AdS space. Modern Phys. Lett. A 26(7), 515 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  18. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kumar, N., Bhattacharyya, S., Gangopadhyay, S.: Phase transitions in Born–Infeld AdS black holes in D-dimensions. Gen. Rel. Grav. 52, 20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Banerjee, R., Modak, S.K., Samanta, S.: Second order phase transition and thermodynamic geometry in Kerr-AdS black hole. Phys. Rev. D 84, 064024 (2011)

    Article  ADS  Google Scholar 

  21. Lala, A., Roychowdhury, D.: Ehrenfests scheme and thermodynamic geometry in Born–Infeld AdS black holes. Phys Rev. D 084027, 86 (2012)

    Google Scholar 

  22. Schmelzer, J.W.P., Gutzow, I.: The Prigogine–Defay ratio revisited. J. Chem. Phys. 125, 184511 (2006)

    Article  ADS  Google Scholar 

  23. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kastor, D., Roy, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quantum Grav. 26, 195011 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gunasekaran, S., Kubizňák, D., Mann, R.B.J.: Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization. High Energy Phys. 2012, 110 (2012)

    Article  ADS  Google Scholar 

  28. Nieuwenhuizen, T.M.: Ehrenfest relations at the glass transition: solution to an old paradox. Phys. Rev. Lett. 79, 1317 (1997)

    Article  ADS  Google Scholar 

  29. Nieuwenhuizen, T.M.: Thermodynamic picture of the glassy state. J. Phys. Condens. Matter 12, 6543 (2000)

    Article  ADS  Google Scholar 

  30. Ruppeiner, G.: Thermodynamics curvature and phase transitions in Kerr–Newman black holes. Phys. Rev. D 78, 024016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Gangopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Gangopadhyay, S. Phase transitions in D-dimensional Gauss–Bonnet–Born–Infeld AdS black holes. Gen Relativ Gravit 53, 35 (2021). https://doi.org/10.1007/s10714-021-02808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02808-0

Navigation