Skip to main content
Log in

Uncovering the evolution of tin use in the United States and its implications

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Tin is of key importance to daily life and national security; it is considered an essential industrial metal. The United States (US) is the world’s largest economy and consumer of natural resources. Therefore, the analysis of historical tin use in the US is helpful for understanding future tin use trends in the world as a whole and in developing countries. Time series analysis, regression analysis with GDP or GDP/capita, and historical data fitted with logistic and Gompertz models are employed in this study. Historical tin use in the US shows three stages—increase-constant-decrease, as GDP per capita has increased. Tin use in the US is negatively correlated with the GDP value added by the manufacturing sector, while the use of tin worldwide and in China continues to increase along with the GDP value added by the manufacturing sector Although a sigmoid curve can fit the US tin use data well, that use is not directly related to the limited tin reserves or resources. Rather, policies, economic restructuring, substitutions, new end-use markets, etc. have played key roles in the changing tin use patterns. This work contributes to understanding future tin use at both the global and national levels: tin use will continue to increase with GDP at the global level, but use patterns of tin at the national level can be changed through human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amy C, Budenstein D, Bagepalli M, England D, Deangelis F, Wilk G, Jarrett C, Kelsall C, Hirschey J, Wen H, Chavan A, Gilleland B, Yuan C, Chueh W C, Sandhage K H, Kawajiri Y, Henry A (2017). Pumping liquid metal at high temperatures up to 1673 kelvin. Nature, 550(7675): 199–203

    Article  CAS  Google Scholar 

  • Baldé C P, Forti V, Gray V, Kuehr R, Stegmann P (2017). The Global E-waste Monitor 2017: Quantities, Flows and Resources.Bonn, Geneva, and Vienna: United Nations University, International Telecommunication Union, and International Solid Waste Association

    Google Scholar 

  • Baldé C P, Wang F, Kuehr R, Huisman J (2015). The global e-waste monitor — 2014, United Nations University, IAS — SCYCLE, Bonn, Germany

    Google Scholar 

  • BEA (2018). https://www.bea.gov/data/all (accessed November 11, 2018)

  • Caithamer P (2008). Regression and Time Series Analysis of the World Oil Peak of Production: Another Look. Mathematical Geosciences, 40(6): 653–670

    Article  Google Scholar 

  • Chen W, Wang M X, Li X (2016a). Analysis of copper flows in the United States: 1975–2012. Resources, Conservation and Recycling, 111: 67–76

    Article  Google Scholar 

  • Chen W Q (2013). Recycling rates of aluminum in the United States. Journal of Industrial Ecology, 17(6): 926–938

    Article  Google Scholar 

  • Chen W Q (2018). Dynamic product-level analysis of in-use aluminum stocks in the United States. Journal of Industrial Ecology, 22(6): 1425–1435

    Article  Google Scholar 

  • Chen W Q, Graedel T E (2012). Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009. Ecological Economics, 81: 92–102

    Article  Google Scholar 

  • Chen W Q, Graedel T E, Nuss P, Ohno H (2016b). Building the material flow networks of aluminum in the 2007 US economy. Environmental Science & Technology, 50(7): 3905–3912

    Article  CAS  Google Scholar 

  • Cheng W, Singh N, Elliott W, Lee J, Rassoolkhani A, Jin X, Mcfarland E W, Mubeen S (2018). Earth-abundant tin sulfide-based photocathodes for solar hydrogen production. Advancement of Science, 5 (1): 1700362

    Google Scholar 

  • Choi Y S, Byeon Y W, Park J H, Seo J H, Ahn J P, Lee J C (2018). Ultrafast sodiation of single-crystalline Sn anodes. ACS Applied Materials & Interfaces, 10(1): 560–568

    Article  CAS  Google Scholar 

  • CNIA (2018). The Yearbook of Nonferrous Metals Industry of China (1991–2017). Beijing: China Nonferrous Metals Industry Association

    Google Scholar 

  • Elshkaki A, Graedel T E (2015). Solar cell metals and their hosts: A tale of oversupply and undersupply. Applied Energy, 158: 167–177

    Article  Google Scholar 

  • Elshkaki A, Graedel T E, Ciacci L, Reck B K (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change, 39: 305–315

    Article  Google Scholar 

  • Elshkaki A, Reck B K, Graedel T E (2017). Anthropogenic nickel supply, demand, and associated energy and water use. Resources, Conservation and Recycling, 125: 300–307

    Article  Google Scholar 

  • Fang H H, Adjokatse S, Shao S, Even J, Loi M A (2018). Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nature Communications, 9: 243

    Article  Google Scholar 

  • Ghosh H, Mitra S, Dhar S, Nandi A, Majumdar S, Saha H, Datta S K, Banerjee C (2017). Light-harvesting properties of embedded tin oxide nanoparticles for partial rear contact silicon solar cells. Plasmonics, 12(6): 1761–1772

    Article  CAS  Google Scholar 

  • Gierlinger S, Krausmann F (2012). The physical economy of the United States of America. Journal of Industrial Ecology, 16(3): 365–377

    Article  Google Scholar 

  • Gordon R B, Bertram M, Graedel T E (2006). Metal stocks and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1209–1214

    Article  CAS  Google Scholar 

  • Gorman M, Dzombak D (2020). Stocks and flows of copper in the US: Analysis of circularity 1970–2015 and potential for increased recovery. Resources, Conservation and Recycling, 153: 104542

    Article  Google Scholar 

  • Graedel T E, Cao J (2010). Metal spectra as indicators of development. Proceedings of the National Academy of Sciences of the United States of America, 107(49): 20905–20910

    Article  CAS  Google Scholar 

  • Graedel T E, Harper E M, Nassar N T, Nuss P, Reck B K (2015). Criticality of metals and metalloids. Proceedings of the National Academy of Sciences of the United States of America, 112(14): 4257–4262

    Article  CAS  Google Scholar 

  • Halada K, Shimada M, Ijima K (2008a). Decoupling status of metal consumption from economic growth. Materials Transactions, 49(3): 411–418

    Article  CAS  Google Scholar 

  • Halada K, Shimada M, Ijima K (2008b). Forecasting of the consumption of metals up to 2050. Materials Transactions, 49(3): 402–410

    Article  CAS  Google Scholar 

  • Heo J W, Banerjee A, Park K H, Jung Y S, Hong S T (2018). New Na-ion solid electrolytes Na4xSn1xSbxS4 (0.02 ≼ x ≼ 0.33) for all-solidstate Na-ion batteries. Advanced Energy Materials, 8(11): 1702716

    Article  Google Scholar 

  • Hiraiwa C, Tawarayama H, Ota H, Higashino T, Okuno K, Majima M (2017). Long-term stability of Ni-Sn porous metals for cathode current collector in solid oxide fuel cells. International Journal of Hydrogen Energy, 42(17): 12567–12573

    Article  CAS  Google Scholar 

  • Höök M, Li J, Oba N, Snowden S (2011). Descriptive and predictive growth curves in energy system analysis. Natural Resources Research, 20(2): 103–116

    Article  Google Scholar 

  • Höök M, Zittel W, Schindler J, Aleklett K (2010). Global coal production outlooks based on a logistic model. Fuel, 89(11): 3546–3558

    Article  Google Scholar 

  • Hu L, Song X F, Zhang S L, Zeng H B, Zhang X J, Marks R, Shan D (2018). MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. Journal of Catalysis, 366: 8–15

    Article  CAS  Google Scholar 

  • Hughes J, Cain L P (2010). American Economic History (8th edition). USA: Pearson Series in Economics) New York: McGraw-Hill

    Google Scholar 

  • International Tin Association (2017). Tin in lead-acid batteries: Impact on future tin use, https://www.internationaltin.org/it-reports/

  • ITC Trade Map. https://www.trademap.org/ (accessed November 14, 2018)

  • Izard C F, Müller D B (2010). Tracking the devil’s metal: Historical global and contemporary U.S. in cycles. Resources, Conservation and Recycling, 54(12): 1436–1441

    Article  Google Scholar 

  • Ju H, Park D, Kim J (2018). Fabrication of polyaniline-coated SnSeS nanosheet/polyvinylidene difluoride composites by a solution-based process and optimization for flexible thermoelectrics. ACS Applied Materials & Interfaces, 10(14): 11920–11925

    Article  CAS  Google Scholar 

  • Kahhat R, Williams E (2012). Materials flow analysis of e-waste: Domestic flows and exports of used computers from the United States. Resources, Conservation and Recycling, 67: 67–74

    Article  Google Scholar 

  • Kamal M, El-Bediwi A, Lashin A R, El-Zarka A H (2011). Copper effects in mechanical properties of rapidly solidified Sn-Pb-Sb Babbitt bearing alloys. Materials Science and Engineering A, 530: 327–332

    Article  CAS  Google Scholar 

  • Kamilli R J, Kimball B E, Carlin J F Jr (2017). Tin, Chapter. S of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply: U.S. Geological Survey Professional Paper 1802, p. S1–S53, https://doi.org/10.3133/pp1802S

  • Kreder K J III, Heligman B T, Manthiram A (2017). Interdigitated eutectic alloy foil anodes for rechargeable batteries. ACS Energy Letters, 2(10): 2422–2423

    Article  CAS  Google Scholar 

  • Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent E H, Tan H (2019). Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 4(10): 864–873

    Article  CAS  Google Scholar 

  • Liu J F, Wang S T, Kravchyk K, Ibanez M, Krumeich F, Widmer R, Nasiou D, Meyns M, Llorca J, Arbiol J, Kovalenko M V, Cabot A (2018a). SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(23): 10958–10966

    Article  CAS  Google Scholar 

  • Liu S H, Sun N K, Liu M, Sucharitakul S, Gao X P A (2018b). Nanostructured SnSe: Synthesis, doping, and thermoelectric properties. Journal of Applied Physics, 123(11): 115109

    Article  Google Scholar 

  • Lucchetta M C, Saporiti F, Audebert F (2019). Improvement of surface properties of an Al-Sn-Cu plain bearing alloy produced by rapid solidification. Journal of Alloys and Compounds, 805: 709–717

    Article  CAS  Google Scholar 

  • Maheskumar V, Gnanaprakasam P, Selvaraju T, Vidhya B (2018). Investigation on the electrocatalytic activity of hierarchical flower like architectured Cu3SnS4 for hydrogen evolution reaction. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 826: 38–45

    CAS  Google Scholar 

  • Mcgroarty D, Wirtz S (2012). Reviewing risk: Critical minerals and national security. American Resources Policy Network, 34

  • Memary R, Giurco D, Mudd G, Mason L (2012). Life cycle assessment: A time-series analysis of copper. Journal of Cleaner Production, 33 (Supplement C): 97–108

    Article  CAS  Google Scholar 

  • Mohr S, Höök M, Mudd G, Evans G (2011). Projection of long-term paths for Australian coal production—Comparisons of four models. International Journal of Coal Geology, 86(4): 329–341

    Article  CAS  Google Scholar 

  • Namias J (2013). The Future of Electronic Waste Recycling in the United States: Obstacles and Domestic Solutions. New York: Columbia University

    Google Scholar 

  • NBS, http://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed September 25, 2017)

  • Nguyen D T, Song S W (2017). Magnesium stannide as a high-capacity anode for magnesium-ion batteries. Journal of Power Sources, 368: 11–17

    Article  CAS  Google Scholar 

  • Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J (2014). Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9): 3061–3068

    Article  CAS  Google Scholar 

  • Nuss P, Chen W Q, Ohno H, Graedel T E (2016). Structural investigation of aluminum in the US economy using network analysis. Environmental Science & Technology, 50(7): 4091–4101

    Article  CAS  Google Scholar 

  • Ohno H, Nuss P, Chen W Q, Graedel T E (2016). Deriving the metal and alloy networks of modern technology. Environmental Science & Technology, 50(7): 4082–4090

    Article  CAS  Google Scholar 

  • Powell J T, Chertow M R (2019). Quantity, components, and value of waste materials landfilled in the United States. Journal of Industrial Ecology, 23(2): 466–479

    Article  Google Scholar 

  • Qin J, Wang T, Liu D, Liu E, Zhao N, Shi C, He F, Ma L, He C (2018). A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Advanced Materials, 30(9): 1704670

    Article  Google Scholar 

  • Qu H, Lu X, Skorobogatiy M (2018). All-solid flexible fiber-shaped lithium ion batteries. Journal of the Electrochemical Society, 165(3): A688–A695

    Article  CAS  Google Scholar 

  • Raabe D, Tasan C C, Olivetti E A (2019). Strategies for improving the sustainability of structural metals. Nature, 575(7781): 64–74

    Article  CAS  Google Scholar 

  • Ranjan Sahu S, Rao Rikka V, Haridoss P, Gopalan R, Prakash R (2019). Superior cycling and rate performance of micron-sized Tin using aqueous-based binder as a sustainable anode for lithium-ion batteries. Energy Technology (Weinheim), 7(11): 1900849

    Article  CAS  Google Scholar 

  • Reck B K, Graedel T E (2012). Challenges in metal recycling. Science, 337(6095): 690–695

    Article  CAS  Google Scholar 

  • Rustad J R (2012). Peak nothing: Recent trends in mineral resource production. Environmental Science & Technology, 46(3): 1903–1906

    Article  CAS  Google Scholar 

  • Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher J S, Mayer M T, Luo J, Grätzel M (2017). Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2(7): 17087

    Article  CAS  Google Scholar 

  • Sovacool B K, Ali S H, Bazilian M, Radley B, Nemery B, Okatz J, Mulvaney D (2020). Sustainable minerals and metals for a low-carbon future. Science, 367(6473): 30–33

    Article  CAS  Google Scholar 

  • Tu Z Y, Choudhury S, Zachman M J, Wei S Y, Zhang K H, Kourkoutis L F, Archer L A (2018). Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nature Energy, 3(4): 310–316

    Article  CAS  Google Scholar 

  • USGS (2017). Tin Statistics and Information. https://www.usgs.gov/centers/nmic/tin-statistics-and-information (accessed September 25, 2017)

  • Vikström H, Davidsson S, Höök M (2013). Lithium availability and future production outlooks. Applied Energy, 110(Supplement C): 252–266

    Article  Google Scholar 

  • Walan P, Davidsson S, Johansson S, Höök M (2014). Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resources, Conservation and Recycling, 93 (Supplement C): 178–187

    Article  Google Scholar 

  • Wang M X, Chen W, Li X (2015). Substance flow analysis of copper in production stage in the US from 1974 to 2012. Resources, Conservation and Recycling, 105: 36–48

    Article  Google Scholar 

  • Wang M X, Liang Y N, Yuan M, Cui X D, Yang Y Q, Li X (2018a). Dynamic analysis of copper consumption, in-use stocks and scrap generation in different sectors in the US 1900–2016. Resources, Conservation and Recycling, 139: 140–149

    Article  Google Scholar 

  • Wang X, Ruan Y, Feng S, Chen S, Su K (2018b). Ag clusters anchored conducting polyaniline As highly efficient cocatalyst for Cu2ZnSnS4 nanocrystals toward enhanced photocatalytic hydrogen generation. ACS Sustainable Chemistry & Engineering, 6(9): 11424–11432

    Article  CAS  Google Scholar 

  • WB (2020). Global Economic Prospects: Slow Growth, Policy Challenges (January 2020). Washington, DC: World Bank

    Google Scholar 

  • Wu H, Lu X, Wang G, Peng K, Chi H, Zhang B, Chen Y, Li C, Yan Y, Guo L, Uher C, Zhou X, Han X (2018). Sodium-doped Tin sulfide single crystal: A nontoxic Earth-abundant material with high thermoelectric performance. Advanced Energy Materials, 8(20): 1800087

    Article  Google Scholar 

  • Yang C R, Tan Q Y, Liu L L, Dong Q Y, Li J H (2017). Recycling Tin from electronic waste: A problem that needs more attention. ACS Sustainable Chemistry & Engineering, 5(11): 9586–9598

    Article  CAS  Google Scholar 

  • Yang C R, Tan Q Y, Zeng X L, Zhang Y P, Wang Z S, Li J H (2018). Measuring the sustainability of tin in China. Science of the Total Environment, 635: 1351–1359

    Article  CAS  Google Scholar 

  • Yu Z, Shang S L, Gao Y, Wang D, Li X, Liu Z K, Wang D (2018). A quaternary sodium superionic conductor—Na10.8Sn1.9PS11.8. Nano Energy, 47: 325–330

    Article  CAS  Google Scholar 

  • Zeng X, Ali S H, Tian J, Li J (2020). Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nature Communications, 11(1): 1544

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang X L, Bond A M, Zhang J (2018). Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction. Physical Chemistry Chemical Physics, 20(8): 5936–5941

    Article  CAS  Google Scholar 

  • Zheng X, Wang R, Wood R, Wang C, Hertwich E G (2018). High sensitivity of metal footprint to national GDP in part explained by capital formation. Nature Geoscience, 11(4): 269–273

    Article  CAS  Google Scholar 

  • Zhu Y X, Syndergaard K, Cooper D R (2019). Mapping the annual flow of steel in the United States. Environmental Science & Technology, 53(19): 11260–11268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (Grant No. 2018YFC1902505), Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (No. 2018TP1002), and the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Qin or Jinhui Li.

Additional information

Highlights

• US tin use decreases as the GDP value added by manufacturing sector increases.

• Global and China’s tin use increases as the GDP added by manufacturing increases.

• A sigmoid curve can fit the US tin use data well.

• US tin use patterns is not due to the finite tin reserves or resources.

• Policies, substitutions, etc. play key roles in the changing tin use patterns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zeng, X., Li, H. et al. Uncovering the evolution of tin use in the United States and its implications. Front. Environ. Sci. Eng. 15, 118 (2021). https://doi.org/10.1007/s11783-021-1406-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1406-6

Keywords

Navigation