Skip to main content
Log in

Some numerical results for control of 3D heat equations using Nash equilibrium

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article deals with some numerical strategies to solve control problems for heat equations with Dirichlet boundary conditions. We assume that we can act on the system through two controls. We use a non-cooperative bi-objective optimization strategy, to which we define the associated Nash equilibrium. More precisely, for such problems, we look for Nash equilibrium associated with optimal cost functionalities, which correspond to appropriate non-cooperative strategies. To numerically calculate the solutions, we combine finite difference methods in time and finite element methods in space. In each system presented, we seek to solve the discretized problems using three iterative methods: Fixed Point, Gradient with Fixed Step, and Conjugated Gradient, and the developed algorithms will be analyzed and compared. The data programming and computational simulations are performed in the software FreeFem ++ and Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Araruna FD, Fernández-Cara E, Santos MC (2015) Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim Calc Var 21:835–856

    Article  MathSciNet  Google Scholar 

  • Araruna FD, Fernández-Cara E, Guerrero S, Santos MC (2017) New results on the Stackelberg-Nash exact control of linear parabolic equations. Syst Control Lett 104:78–85

    Article  MathSciNet  Google Scholar 

  • Araruna FD, Fernández-Cara E, da Silva LC (2019) Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls. Commun Contemp Math 1950034:41

    MATH  Google Scholar 

  • Araruna FD, Fernández-Cara E, da Silva LC (2021) Hierarchic control for the wave equation. J Optim Theory Appl

  • Bauso D (2016) Game theory with engineering applications, Advances in Design and Control, 30. In: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Bruce LM (2013) Game theory applied to big data analytics in geosciences and remote sensing. IEEE International Geoscience and Remote Sensing Symposium - IGARSS. Melbourne, VIC, pp 4094–4097

  • de Carvalho PP, Enrique F-C (2019) Carvalho, Enrique Fernández-Cara on the computation of nash and pareto equilibria for some bi-objective control problems. J Sci Comput 78:246–273

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP, Fernández-Cara E (2021) Numerical Stackelberg-Nash control for the heat equation. SIAM J Sci Comput 42(5):A2678–A2700

    Article  MathSciNet  Google Scholar 

  • de Carvalho PP, Enrique F-C, Ferrel JL (2020) On the computation of nash and pareto equilibria for some bi-objective wave equations. Adv Comput Math 46:73

    Article  MathSciNet  Google Scholar 

  • de Isaías P (2016) Jesus, hierarchical control for the wave equation with a moving boundary. J Optim Theory Appl 171:336–350

    Article  MathSciNet  Google Scholar 

  • de Jesus IP, de Menezes SB (2015) On the approximate controllability of Stackelberg-Nash strategies for linear heat equations in \({\mathbb{R}}^N\) with potentials. Appl Anal 94(4):780–799

    Article  MathSciNet  Google Scholar 

  • Fernández-Cara E, Gayte IM (2019) Theoretical and numerical results for some bi-objective optimal control problems. Commun Pure Applied Anal 19(4):2101–2126

    Article  MathSciNet  Google Scholar 

  • Guillen-Gonzalez F, Marques-Lopes F, Rojas MMA (2013) On the approximate controllability of Stackelberg-Nash strategies for Stokes equations. In: Proceedings of the American Mathematical Society

  • Hecht F (2012) New development in freefem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  • Heliou A (2017) Molecular conformations and game theory. Bioinformatics [q-bio.QM]. Université Paris-Saclay. English. ffNNT : 2017SACLX033ff

  • Hernández-Santamaría V, de Teresa L (2018) Robust stackelberg controllability for linear and semilinear heat equations. Evolut Equ Control Theory 7(2):247

  • Hernández-Santamaría V, de Teresa L (2018) Some remarks on the hierarchic control for coupled parabolic PDEs. Recent advances in PDEs: analysis. Numerics and Control. Springer, Cham, pp 117–137

  • Hernández-Santamaría V, de Teresa L, Poznyak A (2015) Hierarchic control for a coupled parabolic system. Port Math 73(2):115–137

  • Kassay G, Rǎdulescu V (2019) Equilibrium problems and applications (mathematics in science and engineering) (English Edition), 1 Edition

  • Nash JF (1951) Noncooperative games. Ann. Math 54:286–295

    Article  MathSciNet  Google Scholar 

  • Ramos AM (2021) Nash equilibria strategies and equivalent single-objective optimization problems. The case of linear partial differential equations. arXiv:1908.11858

  • Ramos AM, Glowinski R, Periaux J (2001) Pointwise control of the Burgers equation and related Nash equilibria problems: a computational approach. J Optim Theory Appl 112:499–516

    Article  Google Scholar 

  • Ramos AM, Glowinski R, Periaux J (2002) Nash equilibria for the multi-objective control of linear partial partial differential equations. J Optim Theory Appl: 457–498

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitágoras Pinheiro de Carvalho.

Additional information

Communicated by Luz de Teresa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, P.P. Some numerical results for control of 3D heat equations using Nash equilibrium. Comp. Appl. Math. 40, 92 (2021). https://doi.org/10.1007/s40314-021-01488-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01488-5

Keywords

Mathematics Subject Classification

Navigation