Skip to main content
Log in

Recent Trends in Chiral Separations by 2D-HPLC

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

2D-HPLC is an important development in chiral separations due to its excellent capability to resolve the enantiomers. This article describes the latest update in the chiral resolution of racemates using 2D-HPLC. The various aspects of the chiral resolution such as validation, optimization, and applications are discussed in both biological and environmental matrices. Some latest developments of nano-2D-HPLC are also included. Besides, efforts are made to discuss the challenges and future perspectives. During the preparation of this article, it was observed that much work has not been done in this direction and only a few papers describe the application of 2D-HPLC in the chiral separation. There is an urgent need to develop more 2D-HPLC methods for a variety of racemates. This article will be useful to the investigators, academicians and industry persons in the future to improve 2D-HPLC for the chiral resolution of the various racemates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

adapted from Ref. [45]

Fig. 4
Fig. 5

adapted from reference [59] 1(A) and 2(A): achiral separation and 3(A): chiral separation

Fig. 6

Similar content being viewed by others

References

  1. Testa B (1986) Chiral aspects of drug metabolism. Trends Pharmacol Sci 7:60–64. https://doi.org/10.1016/0165-6147(86)90255-5

    Article  CAS  Google Scholar 

  2. Simonyi M, Fitos I, Visy J (1986) Chirality of bioactive agents in protein binding storage and transport processes. Trends Pharmacol Sci 7:112–116. https://doi.org/10.1016/0165-6147(86)90276-2

    Article  CAS  Google Scholar 

  3. Cannon JG, Moe ST, Long JP (1991) Enantiomers of 11-hydroxy-10-methylaporphine having opposing pharmacological effects at 5-HT1A receptors. Chirality 3:19–23. https://doi.org/10.1002/chir.530030105

    Article  CAS  PubMed  Google Scholar 

  4. Ali I, Lone MN, Aboul-Enein HY (2017) Imidazoles as potential anticancer agents. MedChemComm 8:1742–1773. https://doi.org/10.1039/c7md00067g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Witte DT, Ensing K, Franke J-P, Zeeuw RA (1993) Development and registration of chiral drugs. Pharm World Sci 15:10–16. https://doi.org/10.1007/BF02116164

    Article  CAS  PubMed  Google Scholar 

  6. Rauws AG, Groen K (1994) Current regulatory (draft) guidance on chiral medicinal products: Canada, EEC, Japan, United States. Chirality 6:72–75. https://doi.org/10.1002/chir.530060206

    Article  CAS  PubMed  Google Scholar 

  7. Ali I, AL-Othman ZA, Hussain A, Saleem K, Aboul-Enein HY, (2011) Chiral Separation of β-Adrenergic blockers in human plasma by SPE-HPLC. Chromatographia 73:251–256. https://doi.org/10.1007/s10337-010-1891-4

    Article  CAS  Google Scholar 

  8. Ali I, Aboul-Enein HY, Gaitonde VD et al (2009) Chiral separations of imidazole antifungal drugs on AmyCoat RP column in HPLC. Chromatographia 70:223–227. https://doi.org/10.1365/s10337-009-1106-z

    Article  CAS  Google Scholar 

  9. Ali I, Sanagi MM, Aboul-Enein HY (2014) Advances in chiral separations by non-aqueous capillary electrophoresis in pharmaceutical and biomedical analysis. Electrophoresis 35:926–936. https://doi.org/10.1002/elps.201300222

    Article  CAS  PubMed  Google Scholar 

  10. Ali I, Aboul-Enein HY (2006) Impact of immobilized polysaccharide chiral stationary phases on enantiomeric separations. J Sep Sci 29:762–769. https://doi.org/10.1002/jssc.200500372

    Article  CAS  PubMed  Google Scholar 

  11. Ali I, Aboul-Enein HY (2003) Enantio-separation of some clinically used drugs by HPLC using cellulose tris-(3,5-dichlorophenylcarbamate) chiral stationary phase. Biomed Chromatogr 17:113–117. https://doi.org/10.1002/bmc.220

    Article  CAS  PubMed  Google Scholar 

  12. Aboul-Enein HY, Ali I (2002) A comparative study of the enantiomeric resolution of econazole, miconazole and sulconazole by HPLC on various cellulose chiral columns in normal phase mode. J Pharm Biomed Anal 27:441–446. https://doi.org/10.1016/S0731-7085(01)00575-1

    Article  CAS  PubMed  Google Scholar 

  13. Aboul-Enein HY, Ali I (2001) Studies on the effect of alcohol on the chiral discrimination mechanisms of amylose stationary phase on the enantio-separation of nebivolol by HPLC. J Biochem Biophys Methods 48:175–188. https://doi.org/10.1016/s0165-022x(01)00148-8

    Article  CAS  PubMed  Google Scholar 

  14. Ali I, Naim L, Ghanem A, Aboul-Enein HY (2006) Chiral separations of piperidine-2,6-dione analogs on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta 69:1013–1017. https://doi.org/10.1016/j.talanta.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  15. Aboul-Enein HY, Ali I (2002) Optimization strategies for HPLC enantio-separation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. IL Farmaco 57:513–529. https://doi.org/10.1016/s0014-827x(02)01242-9

    Article  CAS  PubMed  Google Scholar 

  16. Aboul-Enein HY, Ali I (2001) HPLC Enantiomeric resolution of nebivolol on normal and reversed amylose based chiral phases. Pharmazie 56:214–216

    CAS  PubMed  Google Scholar 

  17. Ali I, Gupta VK, Aboul-Enein HY (2003) Chirality: a challenge to the environmental scientists. Curr Sci 84:152–156

    CAS  Google Scholar 

  18. Al-Othman ZA, Al-Warthan A, Ali I (2014) Advances in enantiomeric resolution on chiral monolithic phases in liquid chromatography and electrochromatography. J Sep Sci 37:1033–1057. https://doi.org/10.1002/jssc.201301326

    Article  CAS  PubMed  Google Scholar 

  19. Ali I, Aboul-Enein HY, Ghanem A (2005) Enantioselective toxicities and carcinogenesis. Curr Pharm Anal 1:109–125. https://doi.org/10.2174/1573412052953328

    Article  CAS  Google Scholar 

  20. Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A (2014) Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci 37:2447–2466. https://doi.org/10.1002/jssc.201400587

    Article  CAS  PubMed  Google Scholar 

  21. Ali I, Singh P, Aboul-Enein HY, Sharma B (2009) Chiral analysis of ibuprofen residues in water and sediment. Anal Lett 42:1747–1760. https://doi.org/10.1080/00032710903060768

    Article  CAS  Google Scholar 

  22. Aboul-Enein HY, Ali I (2001) A comparison of chiral resolution of econazole, miconazole and sulconazole by HPLC using normal phase amylose CSPs. Fresenius J Anal Chem 370:951–955. https://doi.org/10.1007/s002160100884

    Article  CAS  PubMed  Google Scholar 

  23. Aboul-Enein HY, Ali I (2001) Enantiomeric resolution of some imidazole antifungal agents on Chiralpak WH chiral stationary phase using HPLC. Chromatographia 54:200–202. https://doi.org/10.1365/s10337-009-1106-z

    Article  CAS  Google Scholar 

  24. Ali I, Alam SD, Al-Othman ZA, Farooqi JA (2013) Recent advances in SPE-Chiral-HPLC methods for enantiomeric separation of chiral drugs in biological samples. J Chromatogr Sci 51:645–654. https://doi.org/10.1093/chromsci/bms262

    Article  CAS  PubMed  Google Scholar 

  25. Ali I, Hussain A, Saleem K (2013) Determination of stereo-selective bindings of racemic propranolol with β2 -ad-gpcr in human plasma. J Liq Chromatogr Relat Technol 36:792–806. https://doi.org/10.1080/10826076.2012.673215

    Article  CAS  Google Scholar 

  26. CHamsaz M, Sarafraz Yazdi A, (2009) High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on chiral stationary phases. J Iran Chem Res 2:1–21

    Google Scholar 

  27. Chatpalliwar VA, Porwal PK, Upmanyu N (2012) Validated gradient stability indicating HPLC method for determining Diltiazem hydrochloride and related substances in bulk drug and novel tablet formulation. J Pharm Anal 2:226–237. https://doi.org/10.1016/j.jpha.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balanag VM, Yunus F, Yang P-C, Jorup C (2006) Efficacy and safety of budesonide/formoterol compared with salbutamol in the treatment of acute asthma. Pulm Pharmacol Ther 19:139–147. https://doi.org/10.1016/j.pupt.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  29. Vogelmeier C, D’Urzo A, Pauwels R et al (2005) Budesonide/formoterol maintenance and reliever therapy: an effective asthma treatment option? Eur Respir J 26:819–828. https://doi.org/10.1183/09031936.05.00028305

    Article  CAS  PubMed  Google Scholar 

  30. de Boer RA, Voors AA, van Veldhuisen DJ (2007) Nebivolol: third-generation β-blockade. Expert Opin Pharmacother 8:1539–1550. https://doi.org/10.1517/14656566.8.10.1539

    Article  PubMed  Google Scholar 

  31. Sung J-I, Nguyen NVT, Park M-J et al (2010) Preparation of 2R, 3S, 2′R-nadolol enantiomer using S-(−)-menthyl chloroformate as a chiral derivatizing reagent. Arch Pharm Res 33:1301–1306. https://doi.org/10.1007/s12272-010-0902-1

    Article  CAS  PubMed  Google Scholar 

  32. Vékey K, Vertes A, Telekes A (2008) Medical applications of mass spectrometry. Elsevier, Amsterdam

    Google Scholar 

  33. Stoll DR, Li X, Wang X, et al (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168:3–43; discussion 2. https://doi.org/10.1016/j.chroma.2007.08.054

  34. Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189:109–168. https://doi.org/10.1016/j.chroma.2008.01.086

    Article  CAS  PubMed  Google Scholar 

  35. Herrero M, Ibáñez E, Cifuentes A, Bernal J (2009) Multidimensional chromatography in food analysis. J Chromatogr A 1216:7110–7129. https://doi.org/10.1016/j.chroma.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  36. Dugo P, Cacciola F, Kumm T et al (2008) Comprehensive multidimensional liquid chromatography: Theory and applications. J Chromatogr A 1184:353–368. https://doi.org/10.1016/j.chroma.2007.06.074

    Article  CAS  PubMed  Google Scholar 

  37. Pierce KM, Kehimkar B, Marney LC et al (2012) Review of chemometric analysis techniques for comprehensive two dimensional separations data. J Chromatogr A 1255:3–11. https://doi.org/10.1016/j.chroma.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  38. Matos JTV, Duarte RMBO, Duarte AC (2012) Trends in data processing of comprehensive two-dimensional chromatography: state of the art. J Chromatogr B Anal Technol Biomed Life Sci 910:31–45. https://doi.org/10.1016/j.jchromb.2012.06.039

    Article  CAS  Google Scholar 

  39. Evans CR, Jorgenson JW (2004) Multidimensional LC–LC and LC–CE for high-resolution separations of biological molecules. Anal Bioanal Chem 378:1952–1961. https://doi.org/10.1007/s00216-004-2516-2

    Article  CAS  PubMed  Google Scholar 

  40. Malerod H, Lundanes E, Greibrokk T (2010) Recent advances in on-line multidimensional liquid chromatography. Anal Methods 2:110–122. https://doi.org/10.1039/B9AY00194H

    Article  CAS  Google Scholar 

  41. Sheng N, Zheng H, Xiao Y et al (2017) Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A 1517:97–107. https://doi.org/10.1016/j.chroma.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  42. Cannazza G, Carrozzo MM, Braghiroli D, Parenti C (2008) Enantiomerization and hydrolysis of (+/−)-7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide by stopped-flow multidimensional high-performance liquid chromatography. J Chromatogr A 1212:41–47. https://doi.org/10.1016/j.chroma.2008.09.087

    Article  CAS  PubMed  Google Scholar 

  43. Woiwode U, Ferri M, Maier NM et al (2018) Complementary enantioselectivity profiles of chiral cinchonan carbamate selectors with distinct carbamate residues and their implementation in enantioselective two-dimensional high-performance liquid chromatography of amino acids. J Chromatogr A 1558:29–36. https://doi.org/10.1016/j.chroma.2018.04.061

    Article  CAS  PubMed  Google Scholar 

  44. Woiwode U, Neubauer S, Lindner W et al (2018) Enantioselective multiple heartcut two-dimensional ultra-high-performance liquid chromatography method with a Coreshell chiral stationary phase in the second dimension for analysis of all proteinogenic amino acids in a single run. J Chromatogr A 1562:69–77. https://doi.org/10.1016/j.chroma.2018.05.062

    Article  CAS  PubMed  Google Scholar 

  45. Guillén-Casla V, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2010) Direct chiral determination of free amino acid enantiomers by two-dimensional liquid chromatography: application to control transformations in E-beam irradiated foodstuffs. Anal Bioanal Chem 397:63–75. https://doi.org/10.1007/s00216-009-3376-6

    Article  CAS  PubMed  Google Scholar 

  46. Woiwode U, Reischl RJ, Buckenmaier S et al (2018) Imaging peptide and protein chirality via amino acid analysis by Chiral × Chiral two-dimensional correlation liquid chromatography. Anal Chem 90:7963–7971. https://doi.org/10.1021/acs.analchem.8b00676

    Article  CAS  PubMed  Google Scholar 

  47. Koga R, Miyoshi Y, Negishi E et al (2012) Enantioselective two-dimensional high-performance liquid chromatographic determination of N-methyl-d-aspartic acid and its analogues in mammals and bivalves. J Chromatogr A 1269:255–261. https://doi.org/10.1016/j.chroma.2012.08.075

    Article  CAS  PubMed  Google Scholar 

  48. Hamase K, Nakauchi Y, Miyoshi Y et al (2014) Enantioselective determination of extraterrestrial amino acids using a two-dimensional chiral high-performance liquid chromatographic system. Chromatography 35:103–110. https://doi.org/10.15583/jpchrom.2014.014

    Article  Google Scholar 

  49. Han H, Wang Q-Q, Wu H-H, Wang H (2014) Establishment and application of an automated chiral two-dimensional high performance liquid chromatography method for bio-analysis of d-acidic amino acids. Chin J Anal Chem 42:891–898. https://doi.org/10.1016/S1872-2040(14)60746-5

    Article  CAS  Google Scholar 

  50. Barhate CL, Regalado EL, Contrella ND et al (2017) Ultrafast chiral chromatography as the second dimension in two-dimensional liquid chromatography experiments. Anal Chem 89:3545–3553. https://doi.org/10.1021/acs.analchem.6b04834

    Article  CAS  PubMed  Google Scholar 

  51. Ishii C, Miyamoto T, Ishigo S et al (2017) Two-dimensional HPLC-MS/MS determination of multiple d-amino acid residues in the proteins stored under various pH conditions. Chromatography 38:65–72. https://doi.org/10.15583/jpchrom.2017.009

    Article  CAS  Google Scholar 

  52. Goel M, Larson E, Venkatramani CJ, Al-Sayah MA (2018) Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess “in-vivo” inter-conversion of chiral drug molecules. J Chromatogr B Analyt Technol Biomed Life Sci 1084:89–95. https://doi.org/10.1016/j.jchromb.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  53. Liu M, Huang X, Liu Q et al (2018) Rapid screening and identification of antioxidants in the leaves of Malus hupehensis using off-line two-dimensional HPLC-UV-MS/MS coupled with a 1,1′-diphenyl-2-picrylhydrazyl assay. J Sep Sci 41:2536–2543. https://doi.org/10.1002/jssc.201800007

    Article  CAS  PubMed  Google Scholar 

  54. Iredale J, Wainer IW (1992) Determination of hydroxychloroquine and its major metabolites in plasma using sequential achiral—chiral high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 573:253–258. https://doi.org/10.1016/0378-4347(92)80126-B

    Article  CAS  Google Scholar 

  55. Lee C, Zang J, Cuff J et al (2013) Application of heart-cutting 2D-LC for the determination of peak purity for a chiral pharmaceutical compound by HPLC. Chromatographia 76:5–11. https://doi.org/10.1007/s10337-012-2367-5

    Article  CAS  Google Scholar 

  56. Oda Y, Asakawa N, Kajima T et al (1991) Column-switching high-performance liquid chromatography for on-line simultaneous determination and resolution of enantiomers of verapamil and its metabolites. Pharm Res 8:997–1001. https://doi.org/10.1023/a:1015848806240

    Article  CAS  PubMed  Google Scholar 

  57. Liu Q, Jiang X, Zheng H et al (2013) On-line two-dimensional LC: a rapid and efficient method for the determination of enantiomeric excess in reaction mixtures. J Sep Sci 36:3158–3164. https://doi.org/10.1002/jssc.201300412

    Article  CAS  PubMed  Google Scholar 

  58. Cheng C, Liao C-F (2018) Novel dual two-dimensional liquid chromatography online coupled to ultraviolet detector, fluorescence detector, ion-trap mass spectrometer for short peptide amino acid sequence determination with bottom-up strategy. J Chin Chem Soc 65:714–725. https://doi.org/10.1002/jccs.201700380

    Article  CAS  Google Scholar 

  59. Yang Y, Rosales-Conrado N, Guillén-Casla V et al (2012) Chiral determination of salbutamol, salmeterol and atenolol by two-dimensional LC–LC: application to urine samples. Chromatographia 75:1365–1375. https://doi.org/10.1007/s10337-012-2353-y

    Article  CAS  Google Scholar 

  60. Hamase K, Miyoshi Y, Ueno K et al (2010) Simultaneous determination of hydrophilic amino acid enantiomers in mammalian tissues and physiological fluids applying a fully automated micro-two-dimensional high-performance liquid chromatographic concept. J Chromatogr A 1217:1056–1062. https://doi.org/10.1016/j.chroma.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  61. Karakawa S, Miyoshi Y, Konno R et al (2013) Two-dimensional high-performance liquid chromatographic determination of day–night variation of d-alanine in mammals and factors controlling the circadian changes. Anal Bioanal Chem 405:8083–8091. https://doi.org/10.1007/s00216-013-7071-2

    Article  CAS  PubMed  Google Scholar 

  62. Iguiniz M, Corbel E, Roques N, Heinisch S (2018) On-line coupling of achiral reversed phase liquid chromatography and chiral supercritical fluid chromatography for the analysis of pharmaceutical compounds. J Pharm Biomed Anal 159:237–244. https://doi.org/10.1016/j.jpba.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  63. Ceccato A, Boulanger B, Chiap P et al (1998) Simultaneous determination of methylphenobarbital enantiomers and phenobarbital in human plasma by on-line coupling of an achiral precolumn to a chiral liquid chromatographic column. J Chromatogr A 819:143–153. https://doi.org/10.1016/S0021-9673(98)00547-0

    Article  CAS  PubMed  Google Scholar 

  64. Silan L, Jadaud P, Whitfield LR, Wainer IW (1990) Determination of low levels of the stereoisomers of leucovorin and 5-methyltetrahydrofolate in plasma using a coupled chiral—achiral high-performance liquid chromatographic system with post-chiral column peak compression. J Chromatogr B Biomed Sci Appl 532:227–236. https://doi.org/10.1016/S0378-4347(00)83774-3

    Article  CAS  Google Scholar 

  65. Kammerer B, Kahlich R, Ufer M et al (2005) Achiral–chiral LC/LC–MS/MS coupling for determination of chiral discrimination effects in phenprocoumon metabolism. Anal Biochem 339:297–309. https://doi.org/10.1016/j.ab.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  66. Fujitomo H, Nishino I, Ueno K, Umeda T (1993) Determination of the enantiomers of a new 1,4-dihydropyridine calcium antagonist in dog plasma by achiral/chiral coupled high-performance liquid chromatography with electrochemical detection. J Pharm Sci 82:319–322. https://doi.org/10.1002/jps.2600820320

    Article  CAS  PubMed  Google Scholar 

  67. Lamprecht G, Stoschitzky K (2009) Enantioselective analysis of R- and S-propafenone in plasma by HPLC applying column switching and liquid–liquid extraction. J Chromatogr B 877:3489–3494. https://doi.org/10.1016/j.jchromb.2009.08.024

    Article  CAS  Google Scholar 

  68. Medvedovici A, Albu F, Georgita C et al (2007) Achiral–chiral LC/LC–FLD coupling for determination of carvedilol in plasma samples for bioequivalence purposes. J Chromatogr B 850:327–335. https://doi.org/10.1016/j.jchromb.2006.12.004

    Article  CAS  Google Scholar 

  69. Hroboňová K, Lehotay J, Čižmárik J, Armstrong D (2002) In vitro study of enzymatic hydrolysis of diperodon enantiomers in blood serum by two-dimensional LC. J Pharm Biomed Anal 30:875–880. https://doi.org/10.1016/S0731-7085(02)00347-3

    Article  PubMed  Google Scholar 

  70. Ing-Lorenzini KR, Desmeules JA, Besson M et al (2009) Two-dimensional liquid chromatography–ion trap mass spectrometry for the simultaneous determination of ketorolac enantiomers and paracetamol in human plasma. J Chromatogr A 1216:3851–3856. https://doi.org/10.1016/j.chroma.2009.02.071

    Article  CAS  PubMed  Google Scholar 

  71. Lopes BR, Cassiano NM, Carvalho DM et al (2018) Simultaneous quantification of fluoxetine and norfluoxetine in colostrum and mature human milk using a 2-dimensional liquid chromatography–tandem mass spectrometry system. J Pharm Biomed Anal 150:362–367. https://doi.org/10.1016/j.jpba.2017.12.041

    Article  CAS  PubMed  Google Scholar 

  72. Wang X, Wu H, Luo R et al (2017) Separation and detection of free <scp>d</scp> - and <scp>l</scp> -amino acids in tea by off-line two-dimensional liquid chromatography. Anal Methods 9:6131–6138. https://doi.org/10.1039/C7AY01569K

    Article  CAS  Google Scholar 

  73. Alvim-Jr J, Lopes BR, Cass QB (2016) Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography–tandem mass spectrometry. J Chromatogr A 1451:120–126. https://doi.org/10.1016/j.chroma.2016.05.022

    Article  CAS  Google Scholar 

  74. Kula M, Głód D, Krauze-Baranowska M (2016) Two-dimensional liquid chromatography (LC) of phenolic compounds from the shoots of Rubus idaeus ‘Glen Ample’ cultivar variety. J Pharm Biomed Anal 121:99–106. https://doi.org/10.1016/j.jpba.2015.12.047

    Article  CAS  PubMed  Google Scholar 

  75. Hsu CL, Walters RR (1995) Assay of the enantiomers of ibutilide and artilide using solid-phase extraction, derivatization, and achiral-chiral column-switching high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 667:115–128. https://doi.org/10.1016/0378-4347(95)00005-4

    Article  CAS  Google Scholar 

  76. Dugo P, Russo M, Sarò M et al (2012) Multidimensional liquid chromatography for the determination of chiral coumarins and furocoumarins in Citrus essential oils. J Sep Sci 35:1828–1836. https://doi.org/10.1002/jssc.201200078

    Article  CAS  PubMed  Google Scholar 

  77. Taniyasu S, Falandysz J, Świetojanśka A et al (2005) Clophen A60 composition and content of CBs, CNs, CDFs, and CDDs after 2D-HPLC, HRGC/LRMS, and HRGC/HRMS separation and quantification. J Environ Sci Heal Part A 40:43–61. https://doi.org/10.1081/ESE-200033521

    Article  CAS  Google Scholar 

  78. Woods GC, Simpson MJ, Simpson AJ (2012) Oxidized sterols as a significant component of dissolved organic matter: evidence from 2D HPLC in combination with 2D and 3D NMR spectroscopy. Water Res 46:3398–3408. https://doi.org/10.1016/j.watres.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  79. Nägele E, Vollmer M, Hörth P (2004) Improved 2D nano-LC/MS for proteomics applications: a comparative analysis using yeast proteome. J Biomol Tech 15:134–143

    PubMed  PubMed Central  Google Scholar 

  80. Bai H-Y, Lin S-L, Chung Y-T et al (2011) Quantitative determination of 8-isoprostaglandin F2α in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry. J Chromatogr A 1218:2085–2090. https://doi.org/10.1016/j.chroma.2010.10.091

    Article  CAS  PubMed  Google Scholar 

  81. Taylor P, Nielsen PA, Trelle MB et al (2009) Automated 2D Peptide Separation on a 1D Nano-LC-MS System. J Proteome Res 8:1610–1616. https://doi.org/10.1021/pr800986c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imran Ali or Hassan Y. Aboul-Enein.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Suhail, M., Aboul-Enein, H.Y. et al. Recent Trends in Chiral Separations by 2D-HPLC. Chromatographia 84, 535–548 (2021). https://doi.org/10.1007/s10337-021-04030-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04030-1

Keywords

Navigation