Skip to main content

Advertisement

Log in

Effects of Alzheimer’s Disease-Related Proteins on the Chirality of Brain Endothelial Cells

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Cell chirality is an intrinsic cellular property that determines the directionality of cellular polarization along the left–right axis. We recently show that endothelial cell chirality can influence intercellular junction formation and alter trans-endothelial permeability, depending on the uniformity of the chirality of adjacent cells, which suggests a potential role for cell chirality in neurodegenerative diseases with blood–brain barrier (BBB) dysfunctions, such as Alzheimer’s disease (AD). In this study, we determined the effects of AD-related proteins amyloid-β (Aβ), tau, and apolipoprotein E4 (ApoE4) on the chiral bias of the endothelial cell component in BBB.

Methods

We first examined the chiral bias and effects of protein kinase C (PKC)-mediated chiral alterations of human brain microvascular endothelial cells (hBMECs) using the ring micropattern chirality assay. We then investigated the effects of Aβ, tau, and ApoE4 on hBMEC chirality using chirality assay and biased organelle positions.

Results

The hBMECs have a strong clockwise chiral bias, which can be reversed by protein kinase C (PKC) activation. Treatment with tau significantly disrupted the chiral bias of hBMECs with altered cellular polarization. In contrast, neither ApoE4 nor Aβ-42 caused significant changes in cell chirality.

Conclusions

We conclude that tau might cause BBB dysfunction by disrupting cell polarization and chiral morphogenesis, while the effects of ApoE4 and Aβ-42 on BBB integrity might be chirality-independent. The potential involvement of chiral morphogenesis in tau-mediated BBB dysfunction in AD provides a novel perspective in vascular dysfunction in tauopathies such as AD, chronic traumatic encephalopathy, progressive supranuclear palsy, and frontotemporal dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Barre, P., and D. Eliezer. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Protein Sci. 22:1037–1048, 2013.

    Article  Google Scholar 

  2. Cabrales Fontela, Y., H. Kadavath, J. Biernat, D. Riedel, E. Mandelkow, and M. Zweckstetter. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat. Commun. 8(1):1–12, 2017. https://doi.org/10.1038/s41467-017-02230-8.

    Article  Google Scholar 

  3. Camici, G. G., G. Savarese, A. Akhmedov, and T. F. Lüscher. Molecular mechanism of endothelial and vascular aging: Implications for cardiovascular disease. Eur. Heart J. 36:3392–3403, 2015.

    Article  Google Scholar 

  4. Chen, J., Y. Kanai, N. J. Cowan, and N. Hirokawa. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677, 1992.

    Article  Google Scholar 

  5. Chin, A. S., et al. Epithelial cell chirality revealed by three-dimensional spontaneous rotation. Proc. Natl. Acad. Sci. U. S. A. 115:12188–12193, 2018.

    Article  Google Scholar 

  6. Cleveland, D. W., S. Y. Hwo, and M. W. Kirschner. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116:207–225, 1977.

    Article  Google Scholar 

  7. Di Marco, L. Y., et al. Vascular dysfunction in the pathogenesis of Alzheimer’s disease: a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 82:593–606, 2015.

    Article  Google Scholar 

  8. Drake, J., C. D. Link, and D. A. Butterfield. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24:415–420, 2003.

    Article  Google Scholar 

  9. Drechsel, D. N., A. A. Hyman, M. H. Cobb, and M. W. Kirschner. Drechsel. Mol. Biol. Cell 3:1141–1154, 1992.

    Article  Google Scholar 

  10. Elie, A., et al. Tau co-organizes dynamic microtubule and actin networks. Sci. Rep. 5:1–10, 2015.

    Article  Google Scholar 

  11. Fan, J., H. Zhang, T. Rahman, D. N. Stanton, and L. Q. Wan. Cell organelle-based analysis of cell chirality. Commun. Integr. Biol. 12:78–81, 2019.

    Article  Google Scholar 

  12. Fan, J., et al. Cell chirality regulates intercellular junctions and endothelial permeability. Sci. Adv. 4:2111, 2018.

    Article  Google Scholar 

  13. Fulga, T. A., I. Elson-Schwab, V. Khurana, M. L. Steinhilb, T. L. Spires, B. T. Hyman, and M. B. Feany. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9(2):139–148, 2007. https://doi.org/10.1038/ncb1528.

    Article  Google Scholar 

  14. Gonzalez-Velasquez, F. J., J. A. Kotarek, and M. A. Moss. Soluble aggregates of the amyloid-β protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J. Neurochem. 107:466–477, 2008.

    Article  Google Scholar 

  15. Henríquez, J. P., D. Cross, C. Vial, and R. B. Maccioni. Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem. Funct. 13(4):239–250, 1995. https://doi.org/10.1002/cbf.290130404.

    Article  Google Scholar 

  16. Hoelzle, M. K., and T. Svitkina. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol. Biol. Cell 23:310–323, 2012.

    Article  Google Scholar 

  17. Holtzman, D. M. Vivo effects of ApoE and clusterin on amyloid- β metabolism and neuropathology evidence that amyloid- β conformational to Alzheimer’ s disease. Cell Biol. 23:247–254, 2004.

    Google Scholar 

  18. Hu, Y., X. Yao, Q. Liu, Y. Wang, R. Liu, S. Cui, and J. Ding. Left-right symmetry or asymmetry of cells on stripe-like micropatterned material surfaces. Chin. J. Chem. 36(7):605–611, 2018. https://doi.org/10.1002/cjoc.201800124.

    Article  Google Scholar 

  19. Jiang, Q., et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58:681–693, 2008.

    Article  Google Scholar 

  20. Kovac, A., M. Zilkova, M. A. Deli, N. Zilka, and M. Novak. Human truncated tau is using a different mechanism from amyloid-β to damage the blood-brain barrier. J. Alzheimer’s Dis. 18:897–906, 2009.

    Article  Google Scholar 

  21. Larsson, C. Protein kinase C and the regulation of the actin cytoskeleton. Cell. Signal. 18(3):276–284, 2006. https://doi.org/10.1016/j.cellsig.2005.07.010.

    Article  Google Scholar 

  22. Lee, W., et al. Amyloid beta peptide directly inhibits PKC activation. Mol. Cell. Neurosci. 26:222–231, 2004.

    Article  Google Scholar 

  23. Leszek, J., M. Sochocka, and K. Gasiorowski. Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer’s disease. J. Neurol. Sci. 323:25–32, 2012.

    Article  Google Scholar 

  24. Maoz, B. M., et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36:865–877, 2018.

    Article  Google Scholar 

  25. Marco, S., and S. D. Skaper. Amyloid β-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci. Lett. 401:219–224, 2006.

    Article  Google Scholar 

  26. Nishitsuji, K., T. Hosono, T. Nakamura, G. Bu, and M. Michikawa. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 286:17536–17542, 2011.

    Article  Google Scholar 

  27. Olsson, B., et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15:673–684, 2016.

    Article  Google Scholar 

  28. Polacheck, W. J., et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552:258–262, 2017.

    Article  Google Scholar 

  29. Ray, P., et al. Intrinsic cellular chirality regulates left–right symmetry breaking during cardiac looping. Proc. Natl. Acad. Sci. U. S. A. 115:E11568–E11577, 2018.

    Article  Google Scholar 

  30. Sandoval, R., A. B. Malik, R. D. Minshall, P. Kouklis, C. A. Ellis, and C. Tiruppathi. Ca2+ signalling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J. Physiol. 533(2):433–445, 2001. https://doi.org/10.1111/j.1469-7793.2001.0433a.x.

    Article  Google Scholar 

  31. Satoh, J. I., Y. Kino, and S. Niida. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for alzheimer’s disease from public data. Biomark. Insights 2015:21–31, 2015.

    Google Scholar 

  32. Stopschinski, B. E., et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus -synuclein and -amyloid aggregates. J. Biol. Chem. 293:10826–10840, 2018.

    Article  Google Scholar 

  33. Sullivan, K. G., L. N. Vandenberg, and M. Levin. Cellularmigration may exhibit intrinsic left-right asymmetries: a meta-analysis. bioRxiv. 2018:269217.

  34. Sweeney, M. D., A. P. Sagare, and B. V. Zlokovic. Blood–brain barrier breakdown in Alzheimer’s disease and other pdf. Nat. Rev. Neurol. 14:133–150, 2018.

    Article  Google Scholar 

  35. Tamada, A., and M. Igarashi. Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis. Nat. Commun. 2017. https://doi.org/10.1038/s41467-017-02193-w.

    Article  Google Scholar 

  36. Tee, Y. H., et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17:445–457, 2015.

    Article  Google Scholar 

  37. Tokuda, T., et al. Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348:359–365, 2000.

    Article  Google Scholar 

  38. Trinczek, B., J. Biernat, K. Baumann, E. Mandelkow, and E. M. Mandelkow. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol. Biol. Cell 6:1887–1902, 1995.

    Article  Google Scholar 

  39. Verheijen, J., and K. Sleegers. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 34:434–447, 2018.

    Article  Google Scholar 

  40. Wan, L. Q., A. S. Chin, K. E. Worley, and P. Ray. Cell chirality: emergence of asymmetry from cell culture. Philos. Trans. R. Soc. B Biol. Sci. 371:20150413, 2016.

    Article  Google Scholar 

  41. Wan, L. Q., et al. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. 108:12295–12300, 2011.

    Article  Google Scholar 

  42. Weingarten, M. D., A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U. S. A. 72:1858–1862, 1975.

    Article  Google Scholar 

  43. Xu, Q., et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26:4985–4994, 2006.

    Article  Google Scholar 

  44. Yao, X., and J. Ding. Effects of microstripe geometry on guided cell migration. ACS Appl. Mater. Interfaces. 12(25):27971–27983, 2020. https://doi.org/10.1021/acsami.0c05024.

    Article  Google Scholar 

  45. Ye, M., et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4:1–6, 2014.

    Google Scholar 

  46. Zhao, J., et al. 3-O-Sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew. Chemie - Int. Ed. 59:1818–1827, 2020.

    Article  Google Scholar 

  47. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12:723–738, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health (OD/NICHD DP2HD083961). Leo Q. Wan is a Pew Scholar in Biomedical Sciences (PEW 00026185), supported by the Pew Charitable Trusts.

Conflict of interest

Haokang Zhang, Jie Fan, Zhen Zhao, Chunyu Wang and Leo Q. Wan declare that they have no conflicts of interest.

Ethical standards

No human studies or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Q. Wan.

Additional information

Associate Editor Daniel Fletcher oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fan, J., Zhao, Z. et al. Effects of Alzheimer’s Disease-Related Proteins on the Chirality of Brain Endothelial Cells. Cel. Mol. Bioeng. 14, 231–240 (2021). https://doi.org/10.1007/s12195-021-00669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00669-w

Keywords

Navigation