Skip to main content

Advertisement

Log in

A 8–12 GHz, 44.3 dBm RF output class FF−1 DPA using quad-mode coupled technique for new configurable front-end 5G transmitters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a high-efficiency Class \({\mathrm{FF}}^{-1}\) DPA using the quad-mode coupled technique for new configurable front-end 5G transmitters. The proposed DPA consists of carrier PA, main PA, input–output matching network and hybrid power network (HPN). The HPN includes a quad-mode coupled technique which is four-section U-shaped transmission line. The HPN is used for even–odd mode impedance analysis to ensures the high-selectivity of output power and achieve a wideband response in the presence of harmonic control conditions. The optimum harmonic impedance is analyzed for the desired band to achieve high output power and efficiency. The DPA circuit is fabricated by using 0.25 µm GaN HEMT on silicon nitride monolithic microwave integrated circuit die process. At maximum output power level of 44.3 dBm, the delivered power-added efficiency (PAE) of 64.3–67.3% and drain efficiency (DE) of 71.7–73.7% at even–odd mode operation are achieved with a gain of 13.0–14.3 dB. For the output power level of 39.045 dBm corresponding to 9 dB output back-off (OBO), the drain efficiency lies between 55–62% with 73% fractional bandwidth. All the demonstrated transmission parameters are working in the band of 8–12 GHz. The size of the chip is 2.8 × 1.9 mm2 and it occupies less die area as compared to the existing DPAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Moon, J., & Woo Kim, Y.Y. (2009). A highly efficient doherty power amplifier employing optimized carrier cell. In IEEE Microwave Conference, pp. 1–4.

  2. Kang, D., et al. (2011). Design of bandwidth—Enhance Doherty power amplifier for handset application. IEEE Transactions on Microwave Theory and Technology, 59(5), 3474–3484. https://doi.org/10.1109/TMTT.2011.2171042

    Article  Google Scholar 

  3. Darraji, M., & Ghannouchi, F. M. (2011). Digital Doherty amplifier with enhanced efficiency and extended range. IEEE Transactions on Microwave Theory and Technnol, 59(8), 2898–2909. https://doi.org/10.1109/TMTT.2011.2166122

    Article  Google Scholar 

  4. Lin, J., Zhang, K. et al. (2016). A linearity enhanced broadband Class-F power amplifier with high harmonic suppressed matching circuits for S-band applications. In Proceedings of the Microwave and Millimeter Wave Technology (ICMMT) International Conference, pp. 270–273.

  5. Tango, Linl, X. et al. (2015). A new dual-band Wilkinson power divider. In: IEEE International Wireless Symposium, pp. 372–376.

  6. Grebennikov, A. (2011). Load network design technique for class F and inverse class F PAs. Electronics Letters, 28(8), 58–76.

    Google Scholar 

  7. Son, J., Park, Y., et al. (2014). Broadband saturated power amplifier with harmonic control circuits. IEEE Microwave and Wireless Components Letters, 24(3), 185187. https://doi.org/10.1109/LMWC.2013.2292925

    Article  Google Scholar 

  8. Miwa, S., Kamo, S., Kittaka, Y. et al. (2011). A 67% PAE, 100 W GAN power amplifiers with on-chip harmonic tuning circuits for C-band space applications. In IEEE MTT-S Int. Microwave Symp. Digest, Baltimore, MD, USA, pp. 1–4.

  9. Dong, L. ,He, S., You, F., & Lei, Q. (2012). High-efficiency Class-F- 1 power amplifier design with input harmonic manipulation. In IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, PAWR, pp. 1–4.

  10. Tuffy, N., Guan, L., Zhu, A., & Brazil, T. J. (2013). A simplified broadband design methodology for linearized high-efficiency continuous Class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1952–1963. https://doi.org/10.1109/TMTT.2012.2187534

    Article  Google Scholar 

  11. Hayat, A., & Grebennikov, A. (2015). Class-F power amplifier with high power added efficiency using bowtie shaped harmonic control circuit. IEEE Microwave and Wireless Components Letters, 5(2), 133–135. https://doi.org/10.1109/LMWC.2014.2382649

    Article  Google Scholar 

  12. Sharma, T., Darraji, R., & Ghannouchi, M. (2016). Design methodology of high-efficiency contiguous mode harmonically tuned power amplifiers. In Proceedings of the IEEE Radio and Wireless Symposium, USA, pp. 149–150.

  13. Kim, J., Jo, H. G. D., Oh, J. H., Kim, Y. H., Lee, K. C., & Jung, J. H. (2011). Modeling and design methodology of high-efficiency Class-F and inverse Class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 59(1), 153–165. https://doi.org/10.1109/TMTT.2010.2090167

    Article  Google Scholar 

  14. Inoue, F., Heiman, A., et al. (2000). Analysis of Class-F and inverse Class-F amplifiers. In IEEE MTT-S International Microwave Symposium Digest, pp. 775–778.

  15. Inoue, A., Ohta, A., Goto, S., & Ishikawa, T. (2004). The efficiency of Class-F and inverse Class-F amplifiers. In IEEE MTT-S International Microwave Symposium Digest, pp. 1947–1950.

  16. Wood, Y., & Yang, J. (2006). Analysis and experiments for high efficiency Class-F and inverse Class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 54(5), 1969–1974. https://doi.org/10.1109/TMTT.2006.872805

    Article  Google Scholar 

  17. Sheikh, A., Roff, C., et al. (2009). Peak Class F and inverse Class F drain efficiencies using Si LDMOS in a limited bandwidth design. IEEE Microwave and Wireless Component Letters, 19(7), 473–475. https://doi.org/10.1109/LMWC.2009.2022138

    Article  Google Scholar 

  18. Wei. C. J., & Carlo. P. D. (2000). Analysis and experimental waveform study on inverse Class Class-F mode of microwave power FETs. In IEEE MTT-S International Microwave Symposium Digest, pp. 525–528.

  19. Goto, S., Kunii, T. et al. (2014) Effect of bias condition and input harmonic termination on high efficiency inverse Class-F amplifiers. In Proceedings 31th European Microwave Conference, pp. 1–4.

  20. Colantonio, P., & Giannini, F. (2010). High efficiency low-voltage power amplifier design by second-harmonic manipulation. International Journal of RF and Microwave Computer-Aided Engineering, 10(1), 19–32.

    Article  Google Scholar 

  21. Cipriani, E., Colantonio, P., Giannini, F., & Giofrè, R. (2009). Theory and experimental results of AB-C Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 57(8), 1936–2194. https://doi.org/10.1109/TMTT.2009.2025433

    Article  Google Scholar 

  22. Rubio, J. M., Fang, J., Camarchia, V., Quaglia, R., Pirola, M., & Ghione, G. (2012). 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Transactions on Microwave Theory and Techniques, 60(8), 2543–254. https://doi.org/10.1109/TMTT.2018.2867426

    Article  Google Scholar 

  23. Nghiem, X. A., Guan, J., & Negra, R. (2015). Broadband sequential power amplifier with Doherty-type active load modulation. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2821–2832.

    Article  Google Scholar 

  24. Barakat, A., Thian, M., Fusco, V., Bulja, S., & Guan, L. (2017). Toward a more generalized Doherty power amplifier design for broadband operation. IEEE Transactions on Microwave Theory and Techniques, 65(3), 846–859. https://doi.org/10.1109/TMTT.2016.2633261

    Article  Google Scholar 

  25. Gustafson, D., & Cahuana, J. C. (2013). A wideband and compact GaN MMIC Doherty amplifier for microwave link applications. IEEE Transactions on Microwave Theory and Techniques, 61(8), 922–930. https://doi.org/10.1109/TMTT.2012.2231421

    Article  Google Scholar 

  26. Paul, S., Hou, R., Hellberg, R., & Berglund, B. (2018). A 1.8–3.8-GHz power amplifier with 40% efficiency at 8-dB power back-off. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2741–2750. https://doi.org/10.1109/TMTT.2010.2077951

    Article  Google Scholar 

  27. Kim, J. H., Jo, G. D., Oh, J. H., Kim, Y. H., Lee, K. C., & Jung, J. H. (2011). Modeling and design methodology of high-efficiency Class-F and Class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 59(1), 153–165. https://doi.org/10.1109/TMTT.2010.2090167

    Article  Google Scholar 

  28. Kim, J. (2018). Highly efficient asymmetric class-F−1/F GaN Doherty amplifier. IEEE Transactions on Microwave Theory and Techniques, 59(1), 1350–1358. https://doi.org/10.1109/TMTT.2018.2839195

    Article  Google Scholar 

  29. Kuroda, K., & Ishikawa, R. (2010). Parasitic compensation design technique for a C-band GaN HEMT Class-F amplifier. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2741–2750. https://doi.org/10.1109/TMTT.2010.2077951

    Article  Google Scholar 

  30. Gustafson, D., & Cahuana, C. (2014). A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency. IEEE Transactions on Microwave Theory and Techniques, 62(4), 3006–3016. https://doi.org/10.1109/TMTT.2014.2362136

    Article  Google Scholar 

  31. Giofrè, R., & Colantonio, P. (2017). A high efficiency and low distortion 6 W GaN MMIC Doherty amplifier for 7 GHz radio links. IEEE Microwave Wireless Components Letters, 27(1), 70–72. https://doi.org/10.1109/LMWC.2016.2629972

    Article  Google Scholar 

  32. Yang, Z., Yao, Y., Li, M., Jin, Y., Li, T., Dai, Z., et al. (2019). Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Transactions on Microwave Theory Techniques, 67(2), 765–77. https://doi.org/10.1109/TMTT.2018.2884415

    Article  Google Scholar 

  33. Zhou, X., Chan, W., Zheng, S., Feng, W., Liu, H., Cheng, K., et al. (2019). A mixed topology for broadband high-efficiency Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 67(3), 1050–64. https://doi.org/10.1109/TMTT.2019.2893178

    Article  Google Scholar 

  34. Kim, J. (2019). Analysis and design optimisation for inverse Class-F GaN Doherty amplifier. IET Microwaves, Antennas and Propagation, 13(4), 448–454. https://doi.org/10.1049/iet-map.2018.5124

    Article  Google Scholar 

  35. Naah, G., & He, W. (2020). Symmetrical Doherty power amplifier design via continuous harmonic-tuned Class-J mode. International Journal of Electron and Communications, 106, 96–102. https://doi.org/10.1016/j.aeue.2019.05.008

    Article  Google Scholar 

  36. Gan, D., Shi, W., et al. (2020). Design of continuous mode Doherty power amplifiers using generalized output combiner. International Journal of Electronics and Communications, 116, 1–9. https://doi.org/10.1016/j.aeue.2020.153069

    Article  Google Scholar 

  37. Colantonio, P., Giannini, F., et al. (2020). Compact harmonic control network for Doherty power amplifier. Microwave and Optical Technology Letters, 51(1), 256–258. https://doi.org/10.1002/mop.23983

    Article  Google Scholar 

  38. Giofrè, R., Piazzon, L., Colantonio, P., & Giannin, F. (2014). An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth. IEEE Microwave and Wireless Components Letters, 24(11), 775–777. https://doi.org/10.1109/lmwc.2014.2345193

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2019R1F1A1056937). This research was also supported by the KOREA- INDIA joint program of cooperation in science & technology through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2020K1A3A1A19086889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ Z^{\prime\prime}_{L} = Z_{2} \left[ {\frac{{Z^{\prime}_{L} + jZ_{2} \tan \theta_{1} }}{{Z_{2} + jZ^{\prime}_{L} \tan \theta_{1} }}} \right] $$
$$ {\text{Z}}^{\prime\prime\prime}_{{\text{L}}} = {\text{Z}}_{3} \left[ {\frac{{{\text{Z}}^{\prime\prime}_{{\text{L}}} + {\text{jZ}}_{2} {{tan \theta }}_{1} }}{{{\text{Z}}_{2} + {{jZ^{\prime\prime}}}_{{\text{L}}} {{tan \theta }}_{1} }}} \right] $$
$$ Z_{L} = Z_{4} \left[ {\frac{{Z^{\prime\prime\prime}{}_{L} + jZ_{2} \tan \theta_{1} }}{{Z_{2} + jZ^{\prime\prime\prime}_{L} \tan \theta_{1} }}} \right] $$

\(Z_{1} = \sqrt {Z_{1e} z_{10} }\),\( Z_{2} = \sqrt {Z_{2e} z_{20} }\), \(Z_{3} = \sqrt {Z_{3e} z_{30} }\) and \(Z_{4} = \sqrt {Z_{4e} z_{40} }\)

$$ Z^{\prime}_{L} = \frac{{Z_{in} Z^{2}_{1} }}{{\left( {1 - j{ }Z_{1} (1 + Z_{L} \tan \theta_{1} } \right)}} $$
$$ Z^{\prime\prime}_{L} = \frac{{Z_{in} Z^{2}_{1} - jZ_{1} Z_{2} \tan \theta_{1} {{ \tan}}\theta_{2} }}{{1 - jZ_{1} \left( {1 + \tan \theta_{1} - Z_{in} Z_{2} } \right)}} $$
$$ Z^{\prime\prime\prime}_{L} = \frac{{\begin{array}{*{20}c} {Z_{in} Z_{1}^{2} Z_{3} Z_{4} - jZ_{1} Z_{2} (Z_{3} \tan \theta_{1} \tan \theta_{2} \tan \theta_{3} ) } \\ {\left( {1 - \tan \theta_{1} } \right)} \\ { - Z_{in} Z_{1} Z_{2} Z_{3} \tan \theta_{2} \tan \theta_{3} } \\ \end{array} }}{{\begin{array}{*{20}c} {Z_{in} Z_{1}^{2} Z_{3} \tan \theta_{3} \left( {1 - Z_{1} \tan \theta_{1} } \right) - } \\ {jZ_{1} (1 - Z_{3} \tan \theta_{1} \tan \theta_{2} \tan \theta_{3} )} \\ \end{array} }} $$
$$ \tan^{2} \emptyset = \alpha = \frac{{Z_{1}^{2} Z_{2} Z_{3} Z_{4} \left( {Z_{L} - Z_{in} } \right)}}{{Z_{1}^{2} Z_{3} Z_{L} - Z_{in} Z_{2}^{2} Z_{4} }} $$
$$ Z_{1} = \sqrt {\frac{{Z_{0} Z_{2}^{2} }}{{\left( {\alpha Z_{3} Z_{L} - Z_{2} Z_{3} Z_{4} } \right)\left( {Z_{L} - Z_{0} } \right)}}{ }} $$
$$ Z_{2} = \sqrt {\frac{{Z_{3} Z_{1}^{2} Z_{L} }}{{Z_{3} Z_{1}^{2} Z_{4} \left( {Z_{L} - Z_{0} } \right) + Z_{0} \alpha Z_{4} }}} $$
$$ Z_{3} = \sqrt {\frac{{Z_{2} Z_{1}^{2} Z_{L} }}{{Z_{2} Z_{1}^{2} Z_{4} \left( {Z_{L} - Z_{0} } \right) + Z_{0} \alpha Z_{4} }}} $$
$$ Z_{4} = \frac{{Z_{0} Z_{2}^{2} Z_{L} }}{{\alpha Z_{L} Z_{1}^{2} - Z_{3} Z_{4} \left( {Z_{L} - Z_{0} } \right)}} $$
$$ a_{n,F} = - \frac{1}{\pi }\frac{1}{{n\left( {n^{4} - 10n^{2} + 9} \right)}}\left[ { - 2ncos\left( {\frac{\alpha }{2}} \right)\cot \left( {\frac{\alpha }{2}} \right)\left( {2\beta_{F } \left( {n^{2} + 3} \right) - I_{max} (n^{2} - 9} \right) + 6\beta_{F } \left( {(n^{2} - 1} \right)\sin \left( {\frac{\alpha }{2}} \right)cos\left( {\frac{n\alpha }{2}} \right)} \right] $$
$$ a_{{n,{\text{F}}^{ - 1} }} = - \frac{1}{\pi }\frac{1}{{n\left( {n^{4} - 5n^{2} + 4} \right)}}\left[ { - \cos \left( {\frac{n\alpha }{2}} \right)\left( {4\beta_{{{\text{F}}^{ - 1} }} n\left( {n^{2} - 1} \right)\sin \left( {\frac{\alpha }{2}} \right) - I_{max} n(n^{2} - 9} \right) + 2\sin \left( {\frac{\alpha }{2}} \right)cos\left( {\frac{n\alpha }{2}} \right)} \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Dwari, S., Kanaujia, B.K. et al. A 8–12 GHz, 44.3 dBm RF output class FF−1 DPA using quad-mode coupled technique for new configurable front-end 5G transmitters. Analog Integr Circ Sig Process 107, 497–510 (2021). https://doi.org/10.1007/s10470-021-01823-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01823-0

Keywords

Navigation