Skip to main content
Log in

Abnormal dispersion of fundamental Lamb modes in FG plates: II—symmetric versus asymmetric variation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A closed-form dispersion equation for Lamb waves propagating in functionally graded (FG) plates with arbitrary varying anisotropic physical properties in transverse direction is constructed by applying Cauchy sextic formalism. Comparative analyses of the dispersion curves related to the fundamental modes of homogeneous and FG plates reveal their substantial and visually detected differences even at sufficiently small transverse inhomogeneity. The observed discrepancy in dispersion curves may serve for developing acoustic nondestructive methods for determination of possible transverse inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuznetsov, S.V.: Abnormal dispersion of flexural Lamb waves in functionally graded plates. Z. Angew. Math. Phys. 70, 89 (2019)

    Article  MathSciNet  Google Scholar 

  2. Vlasie, V., Rousseau, M.: Guide modes in a plane elastic layer with gradually continuous acoustic properties. NDT&E Int. 37, 633–644 (2004)

    Article  Google Scholar 

  3. Moreau, L., Hunter, A.J.: 3-D reconstruction of sub-wavelength scatterers from the measurement of scattered fields in elastic waveguides. IEEET. Ultrason. Ferr. 61(11), 1864–1878 (2014)

    Article  Google Scholar 

  4. Pau, A., Achillopoulou, D.V., Vestroni, F.: Scattering of guided shear waves in plates with discontinuities. NDT&E Int. 84, 67–75 (2016)

    Article  Google Scholar 

  5. Baron, C., Naili, S.: Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. J. Acoust. Soc. Am. 127(3), 1307–1317 (2010)

    Article  Google Scholar 

  6. He, J., Rocha, D.C., Leser, P.E., Sava, P., Leser, W.P.: Least-squares reverse time migration (LSRTM) for damage imaging using Lamb waves. Smart Mater. Struct. 28(6), 0964–1726 (2019)

    Article  Google Scholar 

  7. Liu, G.R., Tani, J., Ohyoshi, T.: Lamb waves in a functionally gradient material plates and its transient response. Part 1: Theory; Part 2: Calculation result. Trans. Japan Soc. Mech. Eng. 57A, 131–42 (1991)

    Google Scholar 

  8. Koizumi, M.: The concept of FGM. Ceram. Trans. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  9. Liu, G.R., Tani, J.: Surface waves in functionally gradient piezoelectric plates. Trans. ASME 116, 440–448 (1994)

    Google Scholar 

  10. Miyamoto, Y., Kaysser, W.A., Brain, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials. Kluwer Academic Publishers, Berlin (1999)

    Book  Google Scholar 

  11. Han, X., Liu, G.R., Lam, K.Y., Ohyoshi, T.: A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization. J. Sound Vibr. 236, 307–321 (2000)

    Article  Google Scholar 

  12. Kuznetsov, S.V.: Cauchy formalism for Lamb waves in functionally graded plates. JVC/ J. Vibr. Control 25(6), 1227–1232 (2019)

    Article  MathSciNet  Google Scholar 

  13. Amor, M.B., Ghozlen, M.H.B.: Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method. Ultrasonics 4905, 1–5 (2014)

    Google Scholar 

  14. Nanda, N., Kapuria, S.: Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories. Compos. Struct. 132, 310–320 (2015)

    Article  Google Scholar 

  15. Chao, X., Zexing, Yu.: Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method. Adv. Mech. Eng. 9(11), 1–17 (2017)

    Google Scholar 

  16. Lefebvre, J.E., et al.: Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach. IEEE Trans. Ultrason. Ferr. 48, 1332–1340 (2001)

    Article  Google Scholar 

  17. Qian, Z.H., Jin, F., Wang, Z.K., Kishimoto, K.: Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. Int. J. Eng. Sci. 45, 455–466 (2007)

    Article  Google Scholar 

  18. Gurtin, M.E.: The linear theory of elasticity. In: Handbuch der Physik, vol. VIa/2, pp. 1–296. Springer, Berlin (1976)

  19. Kuznetsov, S.V.: Lamb waves in anisotropic plates (Review). Acoust. Phys. 60(1), 95–103 (2014)

    Article  Google Scholar 

  20. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, New York (2008)

    Book  Google Scholar 

  21. Djeran-Maigre, I., et al.: Solitary SH waves in two-layered traction-free plates. C.R. Mec. 336, 102–107 (2008)

    Article  Google Scholar 

  22. Kuznetsov, S.V.: Love waves in layered anisotropic media. J. Appl. Math. Mech. 70(1), 116–127 (2006)

    Article  MathSciNet  Google Scholar 

  23. Craster, R.V., Joseph, L.M., Kaplunov, J.: Long-wave asymptotic theories: the connection between functionally graded waveguides and periodic media. Wave Motion 51(4), 581–588 (2014)

    Article  MathSciNet  Google Scholar 

  24. Kaplunov, J., Nolde, E.V.: Long-wave vibrations of a nearly incompressible isotropic plate with fixed faces. Quart. J. Mech. Appl. Math. 55, 345–356 (2002)

    Article  MathSciNet  Google Scholar 

  25. Nolde, E.V., Rogerson, G.A.: Long wave asymptotic integration of the governing equations for a pre-stressed incompressible elastic layer with fixed faces. Wave Motion 36(3), 287–304 (2002)

    Article  MathSciNet  Google Scholar 

  26. Shuvalov, A.L., Every, A.G.: On the long-wave onset of dispersion of the surface-wave velocity in coated solids. Wave Motion 45(6), 857–863 (2008)

    Article  Google Scholar 

  27. Argatov, I., Iantchenko, A.: Rayleigh surface waves in functionally graded materials-long-wave limit. Quart. J. Mech. Appl. Math. 72(2), 197–211 (2019)

    Article  MathSciNet  Google Scholar 

  28. Pekeris, C.L.: An inverse boundary value problem in seismology. Physics 5(10), 307–316 (1934)

    Article  Google Scholar 

  29. Markushevich, V.M.: Pekeris substitution and some spectral properties of the Rayleigh boundary problem. Comput. Seismol. 22, 117–126 (1989)

    Google Scholar 

  30. Dobrokhotov, S.Y., Nazakinskii, V.E., Tirozzi, B.: Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data. St. Petersburg Math. J. 22(6), 895–911 (2011)

    Article  MathSciNet  Google Scholar 

  31. Nazakinskii, V.E., Shafarevich, A.I.: Analogue of Maslov’s canonical operator for localized functions and its applications to the description of rapidly decaying asymptotic solutions of hyperbolic equations and systems. Dokl. Math. 97(2), 177–180 (2018)

    Article  MathSciNet  Google Scholar 

  32. Anikin, A.Y., Dobrokhotov, S.Y., Shafarevich, V.E.: Simple asymptotics for a generalized wave equation with degenerating velocity and their applications in the linear long wave run-up problem. Math. Notes 104(4), 471–488 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, Grant 20-49-08002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Kuznetsov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Abnormal dispersion of fundamental Lamb modes in FG plates: II—symmetric versus asymmetric variation . Z. Angew. Math. Phys. 72, 73 (2021). https://doi.org/10.1007/s00033-021-01513-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01513-x

Keywords

Mathematics Subject Classification

Navigation