Skip to main content
Log in

Existence and concentration of solutions to the Gross–Pitaevskii equation with steep potential well

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the following Gross–Pitaevskii equation describing Bose–Einstein condensation of trapped dipolar quantum gases:

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta u+\lambda Q(x)u+\omega _{1}|u|^{2}u+\omega _{2}(K\star |u|^{2})u=0, &{} x\in {\mathbb {R}}^{3},\\ \displaystyle u>0,\quad u\in H^{1}({\mathbb {R}}^{3}),\\ \end{array}\right. } \end{aligned}$$
(0.1)

where \(\lambda >0\), \(Q\in C({\mathbb {R}}^{3},{\mathbb {R}})\) is a potential well, \(\star \) denotes the convolution, \(K(x)=\frac{1-3\cos ^{2}\theta }{|x|^{3}}\) and \(\theta =\theta (x)\) is the angle between the dipole axis determined by the vector x and the vector (0, 0, 1). When \((\omega _{1},\omega _{2})\in {\mathbb {R}}^{2}\) lies in the defined unstable regime, under some suitable conditions on Q, the existence and concentration of nontrivial solutions to problem (0.1) are proved by using variational methods. In particular, the trapping potential is allowed to be sign-changing. Moreover, when \((\omega _{1},\omega _{2})\in {\mathbb {R}}^{2}\) lies in the stable regime, we show that problem (0.1) with small bounded sign-changing potential has only trivial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, P., Sparber, C.: Existence of solitary waves in dipolar quantum gases. Physica D 240, 426–431 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Cai, Y., Wang, H.: Efficient numerical method for computing ground states and dynamic of dipolar Bose–Einstein condensates. J. Comput. Phys. 229, 7874–7892 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bartsch, T., Tang, Z.: Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin. Dyn. Syst. 33, 7–26 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for superlinear elliptic problems on \({\mathbb{R}}^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  6. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48, 2028–2058 (2017)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  8. Carles, R., Hajaiej, H.: Complementary study of the standing wave solutions of the Gross–Pitaevskii equation in dipolar quantum gases. Bull. Lond. Math. Soc. 47, 509–518 (2015)

    Article  MathSciNet  Google Scholar 

  9. Carles, R., Markowich, P., Sparber, C.: On the Gross–Pitaevskii equation for trapped dipolar quantum gases. Nonlinearity 21, 2569–2590 (2008)

    Article  MathSciNet  Google Scholar 

  10. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R}}^{3}\). J. Funct. Anal. 269, 3500–3527 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397–419 (2007)

    Article  Google Scholar 

  12. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    Book  Google Scholar 

  13. Feng, B., Wang, Q.: Strong instability of standing waves for the nonlinear Schrödinger equation in trapped dipolar quantum gases. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09881-0

    Article  Google Scholar 

  14. He, Y., Luo, X.: Concentrating standing waves solutions for the Gross–Pitaevskii equation in trapped dipolar quantum gases. J. Differ. Equ. 266, 600–629 (2019)

    Article  Google Scholar 

  15. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^{3}\). J. Differ. Equ. 257, 566–600 (2014)

    Article  Google Scholar 

  16. Li, L., Sun, J.: Existence and multiplicity of solutions for the Kirchhoff equations with asymptotically linear nonlinearities. Nonlinear Anal. Real World Appl. 26, 391–399 (2015)

    Article  MathSciNet  Google Scholar 

  17. Lushnikov, P.: Collapse of Bose–Einstein condensates with dipole–dipole interactions. Phys. Rev. A 66, 051601(R) (2002)

    Article  MathSciNet  Google Scholar 

  18. Lushnikov, P.: Collapse and stable self-trapping for Bose–Einstein condensates with \(1/{r^b}\) type attractive interatomic interaction potential. Phys. Rev. A 82, 023615 (2010)

    Article  Google Scholar 

  19. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65 (1986)

  20. Santos, L., Shlyapnikov, G., Zoller, P., Lewenstein, M.: Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1797 (2000)

    Article  Google Scholar 

  21. Stuart, C., Zhou, H.: Global branch of solutions for nonlinear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655–681 (2006)

    Article  Google Scholar 

  22. Triay, A.: Derivation of the dipolar Gross–Pitaevskii energy. SIAM J. Math. Anal. 50, 33–63 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z., Zhou, H.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545–573 (2009)

    Article  MathSciNet  Google Scholar 

  24. Willem, M.: Analyse harmonique réelle. Hermann, Paris (1995)

    MATH  Google Scholar 

  25. Willem, M.: Minimax theorems. In: Progress Nonlinear Differential Equations and Their Applications, vol. 24 (1996)

  26. Yi, S., You, L.: Trapped atomic condensates with anisotropic interactions. Phys. Rev. 61, 041604 (2000)

    Article  Google Scholar 

  27. Yi, S., You, L.: Trapped condensates of atoms with dipole interactions. Phys. Rev. 63, 053607 (2001)

    Article  Google Scholar 

  28. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Professor Daomin Cao whose comments on the first version of this work have permitted us to improve our manuscript and to avoid including a wrong proof. The authors also thank Professor Gongbao Li for helpful discussions on the whole paper and constant encouragements over the past few years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huifang Jia is supported by NNSF of China (Nos. 12001126 and 11771166), Xiao Luo is supported by NNSF of China (No. 11901147) and the Fundamental Research Funds for the Central Universities of China (Nos. JZ2019HGBZ0156 and JZ2020HGTB0030)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Luo, X. Existence and concentration of solutions to the Gross–Pitaevskii equation with steep potential well. Z. Angew. Math. Phys. 72, 71 (2021). https://doi.org/10.1007/s00033-021-01510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01510-0

Keywords

Mathematics Subject Classification

Navigation